
Lecture 6: Linear Programming
for Sparsest Cut

Sparsest Cut and SOS

• The SOS hierarchy captures the algorithms for
sparsest cut, but they were discovered directly
without thinking about SOS (and this is how
we’ll present them)

• Why we are covering sparsest cut in detail:

1. Quite interesting in its own right

2. Illustrates the kinds of things SOS can capture

3. Determining if SOS can do better is a major open
problem on SOS.

Lecture Outline

• Part I: Sparsest cut

• Part II: Linear programming relaxation and
analysis via metric embeddings

• Part III: Bourgain’s Theorem

• Part IV: Tight example: expanders

Part I: Sparsest Cut

Flaw of Minimum Cut

• We’ve seen that MIN-CUT can be solved
efficiently

• However, MIN-CUT may not be the best way to
decompose a graph

• Example:

Flaw of Minimum Cut

• MIN-CUT:

• Desired Cut:

Sparsest Cut Problem

• Idea: Divide # of cut edges by # of possible
which could have been cut

• Definition: Given a cut 𝐶 = (𝑆, ҧ𝑆), define

𝜙 𝐶 =
𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑐𝑢𝑡

𝑆 ⋅ ҧ𝑆

• Sparsest cut problem: Minimize 𝜙(𝐶)

• Can also have a weighted version:

𝜙 𝐶 =
σ𝑖,𝑗:𝑖∈𝑆,𝑗∈ ҧ𝑆, 𝑖,𝑗 ∈𝐸(𝐺)𝑤(𝑖, 𝑗)

σ𝑖,𝑗:𝑖∈𝑆,𝑗∈ ҧ𝑆 𝑤(𝑖, 𝑗)

Linear Programming for Sparsest Cut

• Theorem [LR99]: There is a linear programming
relaxation for sparsest cut which gives an
𝑂(log 𝑛) approximation.

Part II: Linear Programming
Relaxation and Analysis via

Metric Embeddings

Metric and Pseudo-metric Spaces

• Definition: A metric space (𝑋, 𝑑) is a set of
points 𝑋 and a distance function 𝑑: 𝑋 × 𝑋 →
ℝ≥0 where
1. ∀𝑥1, 𝑥2 ∈ 𝑋, 𝑑 𝑥1, 𝑥2 = 𝑑(𝑥1, 𝑥2)

2. ∀𝑥1, 𝑥2 ∈ 𝑋, 𝑑 𝑥1, 𝑥2 = 0⬄ 𝑥1 = 𝑥2
3. ∀𝑥1, 𝑥2, 𝑥3 ∈ 𝑋, d x1, x3 ≤ 𝑑 𝑥1, 𝑥2 + 𝑑(𝑥2, 𝑥3)

• Example 1: Euclidean Space: 𝑑 𝑥, 𝑦 = 𝑦 − 𝑥

• Example 2: 𝐿1 distance: 𝑑 𝑥, 𝑦 = σ𝑖 |𝑦𝑖 − 𝑥𝑖|

• Without the second condition, this is called a
pseudo-metric space

Cut Spaces

• A cut 𝐶 = (𝑆, ҧ𝑆) induces a pseudo-metric space
on a graph 𝐺: Take 𝑑(𝑢, 𝑣) = 0 if 𝑢, 𝑣 ∈ 𝑆 or
𝑢, 𝑣 ∈ ҧ𝑆 and otherwise take 𝑑 𝑢, 𝑣 = 𝑐 for
some 𝑐 > 0.

• We call this a cut space.

Problem Reformulation

• Reformulation: Minimize
σ𝑖,𝑗:𝑖<𝑗, 𝑖,𝑗 ∈𝐸(𝐺) 𝑑(𝑖,𝑗)

σ𝑖,𝑗:𝑖<𝑗 𝑑(𝑖,𝑗)
over

all cut spaces

• First issue: Objective function is nonlinear

• Fix: Set denominator equal to 1.

• Modified Reformulation: Minimize
σ𝑖,𝑗:𝑖<𝑗, 𝑖,𝑗 ∈𝐸(𝐺)𝑑(𝑖, 𝑗) over all cut spaces

normalized so that σ𝑖,𝑗:𝑖<𝑗 𝑑(𝑖, 𝑗) = 1

• Want to minimize σ𝑖,𝑗:𝑖<𝑗, 𝑖,𝑗 ∈𝐸(𝐺)𝑑(𝑖, 𝑗) over

all cut spaces normalized so that
σ𝑖,𝑗:𝑖<𝑗 𝑑(𝑖, 𝑗) = 1

• Relaxation: Minimize σ𝑖,𝑗:𝑖<𝑗, 𝑖,𝑗 ∈𝐸(𝐺)𝑑(𝑖, 𝑗)

over all pseudo-metrics normalized so that
σ𝑖,𝑗:𝑖<𝑗 𝑑(𝑖, 𝑗) = 1. Linear program constraints:

1. ∀𝑖, 𝑗, 𝑑 𝑖, 𝑗 = 𝑑(𝑗, 𝑖) ≥ 0

2. ∀𝑖, 𝑗, 𝑘, 𝑑(𝑖, 𝑘) ≤ 𝑑(𝑖, 𝑗) + 𝑑(𝑗, 𝑘)

3. σ𝑖,𝑗:𝑖<𝑗 𝑑(𝑖, 𝑗) = 1

Problem Relaxation

• Definition: We say that a pseudo-metric (𝑋, 𝑑) is
an 𝐿1 space if there is a mapping f: 𝑋 → ℝn such
that ∀𝑥, 𝑦 ∈ 𝑋,

𝑑 𝑥, 𝑦 = σ𝑖 |𝑓 𝑦 𝑖 − 𝑓 𝑥 𝑖|

• In this case, we may as well pretend we are
already in ℝ𝑛 with the 𝐿1 distance function

• Lemma: For the sparsest cut relaxation, there is
no gap between 𝐿1 spacs and cut spaces!

𝐿1 Spaces

• If 𝑥1 = 1,2 , 𝑥2 = (0,3), and 𝑥3 = (4,4), then
in the 𝐿1 metric, 𝑑 𝑥1, 𝑥2 = 2, 𝑑 𝑥1, 𝑥3 = 5,
and 𝑑 𝑥2, 𝑥3 = 5

𝐿1 Space Example

0 1 2 3 4 5 6
0
1
2
3
4
5
6

𝑥1

𝑥2

𝑥3

• Lemma: Any finite 𝐿1 space can be decomposed
as a linear combination of cut spaces.

• Proof sketch: We can work coordinate by
coordinate. For a single coordinate, here is the
picture:

Decomposing 𝐿1 Pseudo-metrics

-2 -1 0 1 2

=
-2 -1 0 1 2

-2 -1 0 1 2

-2 -1 0 1 2

1 ×

2 ×

1 ×

+

+

Useful Lemma

• Lemma: If 𝑎, 𝑏 ≥ 0 and 𝑐, 𝑑 > 0 then

min
𝑎

𝑐
,
𝑏

𝑑
≤
𝑎 + 𝑏

𝑐 + 𝑑
≤ max

𝑎

𝑐
,
𝑏

𝑑

• Proof: Without loss of generality, assume that
𝑎

𝑐
≤

𝑏

𝑑
. Take 𝑎′ =

𝑏𝑐

𝑑
≥ 𝑎 and take 𝑏′ =

𝑑𝑎

𝑐
≤ 𝑏.

Now
𝑎

𝑐
=

𝑎+𝑏′

𝑐+𝑑
≤

𝑎+𝑏

𝑐+𝑑
≤

𝑎′+𝑏

𝑐+𝑑
=

𝑏

𝑑

• Together with the previous decomposition, this
shows that for any 𝐿1 space, there’s always a cut
spacec which is as good or better.

Metric Embeddings and Distortion

• Often want to embed a more complicated
metric space into a simpler one. This embedding
won’t be perfect, but may still be useful

• Given metric spaces 𝑋, 𝑑 , (𝑌, 𝑑′) and a map
𝑓: 𝑋 → 𝑌:

1. Define the expansion of 𝑓 to be m𝑎𝑥
𝑢,𝑣∈𝑋

𝑑′(𝑓 𝑢 ,𝑓(𝑣))

𝑑(𝑢,𝑣)

2. Define the contraction of 𝑓 to be m𝑎𝑥
𝑢,𝑣∈𝑋

𝑑(𝑢,𝑣)

𝑑′(𝑓 𝑢 ,𝑓(𝑣))

3. Define the distortion of 𝑓 to be the product of the
expansion and the contraction of 𝑓

Metric Embeddings into 𝐿1

• If the pseudo-metric given by our linear
program can be embedded into 𝐿1 with
distortion 𝛼, this gives an 𝛼-approximation for
the value of the sparsest cut.

• Question: How well can general finite pseudo-
metric spaces be embedded into 𝐿1?

Part III: Bourgain’s Theorem

Bourgain’s Theorem

• Theorem [Bou85]: Every metric on 𝑛 points can
be embedded into an 𝐿1 metric with distortion
𝑂(log 𝑛). Moreover, 𝑂(𝑙𝑜𝑔𝑛 2) coordinates are
sufficient

• Note: the bound on the number of coordinates
is due to Linial, London, and Rabinovich [LLR95]

Fréchet Embeddings

• Def: Given a set of points 𝑆, define
𝑑 𝑥, 𝑆 = min

𝑠∈𝑆
𝑑 𝑥, 𝑠

• Fréchet embedding: Gives a value to each point
based on its distance from some subset 𝑆 of
points and takes the distance between. In other
words,

𝑑𝑆 𝑥, 𝑦 = |𝑑 𝑦, 𝑆 − 𝑑(𝑥, 𝑆)|

• Proposition: For any 𝑆, 𝑑𝑆 𝑥, 𝑦 ≤ 𝑑(𝑥, 𝑦)

Fréchet Embedding Example

• Start with the distance metric 𝑑 𝑢, 𝑣 = length
of the shortest path from 𝑢 to 𝑣 on the graph
shown. If we take 𝑆 to be the set of red vertices,
we get the values shown for 𝑑(𝑣, 𝑆).

0

0
1

1

1

12
3

2

Fréchet Embeddings Bound

• 𝑑 𝑥, 𝑆 = min
𝑠∈𝑆

𝑑 𝑥, 𝑠

• 𝑑𝑆 𝑥, 𝑦 = |𝑑 𝑦, 𝑆 − 𝑑(𝑥, 𝑆)|

• Proposition: For any 𝑆, 𝑑𝑆 𝑥, 𝑦 ≤ 𝑑(𝑥, 𝑦)

• Proof: Let 𝑠 be the point in 𝑆 of minimal distance
from 𝑥.
𝑑 𝑦, 𝑆 ≤ 𝑑 𝑦, 𝑠 ≤ 𝑑 𝑥, 𝑠 + 𝑑 𝑥, 𝑦 = 𝑑 𝑥, 𝑦 + 𝑑(𝑥, 𝑆)

• By symmetry, d 𝑥, 𝑆 ≤ 𝑑 𝑥, 𝑦 + 𝑑(𝑦, 𝑆) so
dS x, y = 𝑑 𝑦, 𝑆 − 𝑑 𝑥, 𝑆 ≤ 𝑑(𝑥, 𝑦), as
needed.

Bourgain’s Theorem Proof Idea

• Proof idea: Choose many Fréchet embeddings,
have a coordinate for each one.

• Resulting expansion is at most the sum of the
weights on the embeddings (this will be
𝑂(𝑙𝑜𝑔𝑛) for us)

• Challenge: Ensure that the contraction is 𝑂(1).
In other words, ensure that some of the Fréchet
embeddings preserve some of the distance
between each pair of points 𝑥 and 𝑦.

Bad Case #1

• Issue: Could have that 𝑓𝑆 𝑥, 𝑦 ≪ 𝑑(𝑥, 𝑦). In
fact, 𝑓𝑆(𝑥, 𝑦) can easily be zero!

• Case 1: All points in 𝑆 are far from 𝑥 and 𝑦 and
𝑑 𝑥, 𝑆 = 𝑑(𝑦, 𝑆).

• Example:

x

y

Nearest point in 𝑆

Bad Case #2

• Case 2: There two points 𝑠𝑥 and 𝑠𝑦 in 𝑆 where 𝑠𝑥
is very close to 𝑥 and 𝑠𝑦 is very close to 𝑦. If so,
can have that

d x, S = 𝑑 𝑥, 𝑠𝑥 = 𝑑 𝑦, 𝑠𝑦 = 𝑑(𝑦, 𝑆)

• Example:

x y

𝑠𝑥 𝑠𝑦

Attempt #1

• Want 𝑆 to contain exactly one point 𝑝 which is
very close to 𝑥 or 𝑦.

• Let 𝑑 = 𝑑(𝑥, 𝑦). Pick 𝑆 so that 𝑆 has precisely

one point 𝑝 which is within distance
𝑑

3
of either 𝑥

or 𝑦.

• Can be accomplished with constant probability
by taking a random S of the appropriate size.

x y

Attempt #1

• Attempt #1: Pick 𝑆 so that 𝑆 has precisely one

point 𝑝 which is within distance
𝑑

3
of either 𝑥 or

𝑦.

• Danger: 𝑆 also contains point(s) of distance

slightly more than
𝑑

3
from the other point.

x y

Attempt #1

• Possible fix: Require that 𝑆 contains exactly one

point within distance
𝑑

3
of 𝑥 or 𝑦 and no other

points within distance
𝑑

2
of 𝑥 or 𝑦

• This implies 𝑑𝑆 𝑥, 𝑦 ≥
𝑑

6

• However, may be too much to ask for…

x y

Actual Analysis

• Def: Given 𝑟, 𝑝, define 𝐵𝑟 𝑝 = {𝑥: 𝑑 𝑥, 𝑝 ≤ 𝑟}

• For each 𝑖 ∈ [1, ⌈log2 𝑛⌉], define 𝑑𝑖 to be

𝑑𝑖 = min min{𝑟 : 𝐵𝑟 𝑥 ∪ 𝐵𝑟 𝑦 ≥ 2𝑖},
𝑑

3

• Lemma: If 𝑆 consists of
𝑛

2𝑖
points chosen at

random then P 𝑓𝑆 𝑥, 𝑦 ≥ 𝑑𝑖+1 − 𝑑𝑖 is Ω(1)

• Proof: With probability Ω(1),

1. ∃𝑝 ∈ 𝑆: 𝑝 ∈ 𝐵𝑑𝑖 𝑥 ∪ 𝐵𝑑𝑖(𝑦)

2. ∄𝑝′: 𝑝′ ∈ 𝑆, 𝑝′ ≠ 𝑝,𝑚𝑖𝑛{𝑑 𝑥, 𝑝′ , 𝑑 𝑦, 𝑝′ } < 𝑑𝑖+1

Actual Analysis Picture

• If 𝑆 consists of
𝑛

2𝑖
points chosen at random then

with probability Ω(1):

x y

s𝑑𝑖
𝑑𝑖+1

Actual Analysis Continued

• Lemma: If 𝑆 consists of
𝑛

2𝑖
points chosen at

random then with constant probability,
𝑓𝑆 𝑥, 𝑦 ≥ 𝑑𝑖+1 − 𝑑𝑖

• Corollary: Averaging over all 𝑖 ∈ [1, 𝑙𝑜𝑔𝑛], the

expected value of 𝑓𝑆(𝑥, 𝑦) is at least Ω
𝑑

𝑙𝑜𝑔𝑛

• For each 𝑖 ∈ [0, 𝑙𝑜𝑔𝑛], take 𝑂(𝑙𝑜𝑔𝑛) 𝑆 of size
2𝑖 at random. This ensures that everything is
close to its expectation with high probability.

Actual Analysis Continued

• Full embedding procedure: For each 𝑖 ∈
[0, 𝑙𝑜𝑔𝑛 − 1], take m = 𝑂(𝑙𝑜𝑔𝑛) 𝑆 of size 2𝑖

at random. For each such 𝑆, create a coordinate

where each point 𝑥 has value
1

𝑚
𝑑 𝑥, 𝑆 .

• Averaging over many subsets of each size
ensures that everything is close to its
expectation with high probability.

Part IV: Tight Example: Expanders

Expander Graphs

• A vertex/edge expander is a graph 𝐺 where
every subset of 𝐺 has a lot of
neighbors/outgoing edges

• Definition: The vertex expansion of a graph 𝐺 is

min
𝑆:0< 𝑆 ≤

𝑛

2

𝑁(𝑆)

|𝑆|
where

𝑁 𝑆 = {𝑣: ∃𝑢 ∈ 𝑆: 𝑢, 𝑣 ∈ 𝐸(𝐺)}

• Definition: The edge expansion of a graph 𝐺 is

min
𝑆:0< 𝑆 ≤

𝑛

2

𝛿(𝑆)

|𝑆|
where

𝛿 𝑆 = { 𝑢, 𝑣 : 𝑢 ∈ 𝑆, 𝑣 ∉ 𝑆, 𝑢, 𝑣 ∈ 𝐸(𝐺)}

Observations on Expander Graphs

• Expander graphs are extremely useful in
complexity theory.

• Derandomization: random walks mix well

• Here: Edge expanders have no sparse cuts.

• Proposition: If 𝐺 has edge expansion 𝑐 then for

all cuts C = (𝑆, ҧ𝑆), 𝜙 𝐶 =
𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑐𝑢𝑡

𝑆 ⋅ ҧ𝑆
≥

𝑐

𝑛

• Proof: By definition, # 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑐𝑢𝑡 ≥ 𝑐|𝑆| and
ҧ𝑆 ≤ 𝑛

Constructing Expanders

• With high probability, random graphs are
excellent expanders.

• Constructing expanders explicitly is more
challenging and is an entire field of research on
its own.

Ω(log 𝑛) gap with expanders

• Use the distance metric 𝑑𝑖𝑗 = smallest length of
a path from 𝑖 to 𝑗.

• For a 𝑑-regular expander with edge expansion
𝑑

4
:

1. σ𝑖,𝑗:𝑖<𝑗, 𝑖,𝑗 ∈𝐸(𝐺)𝑑𝑖𝑗 = |𝐸 𝐺 | which is 𝑂(𝑛𝑑)

2. σ𝑖,𝑗:𝑖<𝑗 𝑑𝑖𝑗 is Ω(𝑛2log(𝑛)) as most pairs of
vertices are logarithmic distance apart

• Linear programming relaxation value: 𝑂
𝑑

𝑛𝑙𝑜𝑔𝑛

• Actual value is Ω
𝑑

𝑛

References

• [Bou85] J. Bourgain. On Lipschitz embedding of finite metric spaces in Hilbert space.
Israel J. Math., 52(1–2), p. 46–52. 1985.

• [LR99] T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and
their use in designing approximation algorithms. Journal of the ACM (JACM) 46(6),
p. 787–832. 1999

• [LLR95] N. Linial, E. London, Y. Rabinovich. The geometry of graphs and some of its
algorithmic applications. Combinatorica 15(2),p. 215–245. 1995

