Lecture 6: Linear Programming
for Sparsest Cut



Sparsest Cut and SOS

 The SOS hierarchy captures the algorithms for
sparsest cut, but they were discovered directly
without thinking about SOS (and this is how
we’ll present them)

* Why we are covering sparsest cut in detail:
1. Quite interesting in its own right
2. lllustrates the kinds of things SOS can capture

3. Determining if SOS can do better is a major open
problem on SOS.
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Part |: Sparsest Cut



Flaw of Minimum Cut

e We've seen that MIN-CUT can be solved
efficiently

* However, MIN-CUT may not be the best way to
decompose a graph

 Example:
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Flaw of Minimum Cut

* MIN-CUT:

e Desired Cut:




Sparsest Cut Problem

* |dea: Divide # of cut edges by # of possible
which could have been cut

* Definition: Given a cut C = (S, S), define
#of edges cut
¢(C) = =
S1- 1S
* Sparsest cut problem: Minimize ¢ (C)
* Can also have a weighted version:

P(C) =

Zi,j:iES,jES,(i,j)EE(G) w(i,Jj)
Zi,j:ieg,jeS w(i,j)




Linear Programming for Sparsest Cut

* Theorem [LR99]: There is a linear programming
relaxation for sparsest cut which gives an
O (log n) approximation.



Part Il: Linear Programming
Relaxation and Analysis via
Metric Embeddings



Metric and Pseudo-metric Spaces

Definition: A metric space (X, d) is a set of
points X and a distance functiond: X X X —
R>o where

1. Vxq,x, € X,d(xq,x5) = d(xq,x,)

2. Vxy,x, €X,d(x,x,) =0 x1 =x,

3. Vxq,%9,x3 € X,d(x{,X3) < d(xq,x,) +d(x,,x3)
Example 1: Euclidean Space: d(x,y) = ||y — x||
Example 2: L! distance: d(x,y) = Y; |y; — x;]
Without the second condition, this is called a
pseudo-metric space



Cut Spaces

« Acut C = (S,S) induces a pseudo-metric space
on agraph G: Taked(u,v) = 0ifu,v € S or
u, v € S and otherwise take d(u, v) = c for
some ¢ > 0.

* We call this a cut space.



Problem Reformulation

Reformulation: Minimize Z:<LENEEG) over
Zi,j:i<j d(i,j)

all cut spaces
First issue: Objective function is nonlinear
Fix: Set denominator equal to 1.

Modified Reformulation: Minimize
Qi jri<j(ijeee) @6, J) overall cut spaces
normalized so that 2,; .;«; d(i,j) =1



Problem Relaxation

* Want to minimize 2,; i.ici i yeeg) (6, j) over
all cut spaces normalized so that
2ijiicj AL, J) =1

* Relaxation: Minimize X,; i.ici i iyer(g) (6 J)
over all pseudo-metrics normalized so that
2.ijii<j d(i,j) = 1. Linear program constraints:
1. Vi, j,d(@,)) =d(,i) =0
2. Vi, jk,d(i,k) <d(i,j)+d(, k)
3. Xiji<j d(i,)) =1



L' Spaces

* Definition: We say that a pseudo-metric (X, d) is
an L' space if there is a mapping f: X = R such
that Vx,y € X,

dx,y) =X 1f )i — f(x);]

* |n this case, we may as well pretend we are
already in R™ with the L! distance function

* Lemma: For the sparsest cut relaxation, there is
no gap between L' spacs and cut spaces!



L' Space Example

e If x; = (1,2), x, = (0,3), and x3 = (4,4), then
in the L metric, d(xq,x,) = 2, d(x{,x3) = 5,
and d(x,,x3) =5
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Decomposing L' Pseudo-metrics

* Lemma: Any finite L* space can be decomposed
as a linear combination of cut spaces.

* Proof sketch: We can work coordinate by
coordinate. For a single coordinate, here is the

picture:
1x ¢SS0 -+
2 -1 0 1 2
GO0 -2x 0009
2 -1 0 1 2 2 -1 0 1 2
1 X -+

-2 -1 0 1 2



Useful Lemma

e Lemma:lfa,b = 0andc,d > 0 then

fab) _a+b _ (a b

min =y 4 —_ _IIla)(<_;_>

c'd) c+d c d,

* Proof: Without loss of generality, assume that

a b bc da
— < -.Takea' =—>aandtake b’ =— < b.
C d , d / C

a a+b a+b aﬁJJ__b

Now — = <— < = —
C c+d c+d c+d d
* Together with the previous decomposition, this
shows that for any L' space, there’s always a cut

spacec which is as good or better.




Metric Embeddings and Distortion

e Often want to embed a more complicated
metric space into a simpler one. This embedding
won’t be perfect, but may still be useful

 Given metric spaces (X, d), (Y,d") and a map
[ X-Y:

1. Define the expansion of f to be max d GW.r @)
U VeEX d(u,v)

| . d(u,v)
2. Define the contraction of f to b
efine the contraction of f to be {Lq]Cg( 4’ (F.F ()

3. Define the distortion of f to be the product of the
expansion and the contraction of f




Metric Embeddings into L*

* |f the pseudo-metric given by our linear
program can be embedded into L! with
distortion «, this gives an a-approximation for
the value of the sparsest cut.

* Question: How well can general finite pseudo-
metric spaces be embedded into L'?



Part Ill: Bourgain’s Theorem



Bourgain’s Theorem

* Theorem [Bou85]: Every metric on n points can
be embedded into an L' metric with distortion

0 (logn). Moreover, 0((logn)#) coordinates are
sufficient

 Note: the bound on the number of coordinates
is due to Linial, London, and Rabinovich [LLR95]



Fréchet Embeddings

* Def: Given a set of points S, define
d(x,S) = melbr) d(x,s)
S

* Frechet embedding: Gives a value to each point
based on its distance from some subset S of
points and takes the distance between. In other
words,

* Proposition: Forany S, ds(x,y) < d(x,y)



Fréchet Embedding Example

 Start with the distance metric d(u, v) = length
of the shortest path from u to v on the graph
shown. If we take S to be the set of red vertices,
we get the values shown for d(v, S).




Fréchet Embeddings Bound

d(x,S) = mind(x,s)
SES

Proposition: Forany S, ds(x,y) < d(x,y)

Proof: Let s be the point in S of minimal distance

from x.
d(y,S) <d(y,s) <d(x,s) +d(x,y) =d(x,y) +d(x,S)

By symmetry, d(x,S) < d(x,y) +d(y,S) so

ds(X,Y) — |d()’»5) _ d(X,S)l < d(X,Y), as
needed.



Bourgain’s Theorem Proof Idea

* Proof idea: Choose many Fréchet embeddings,
nave a coordinate for each one.

* Resulting expansion is at most the sum of the
weights on the embeddings (this will be
O(logn) for us)

* Challenge: Ensure that the contraction is O(1).
In other words, ensure that some of the Fréchet
embeddings preserve some of the distance
between each pair of points x and y.



Bad Case #1

* |Issue: Could have that fo(x,y) < d(x,y). In
fact, fs(x,y) can easily be zero!

* Case 1: All pointsin § are far from x and y and
d(x,S) =d(y,S).

 Example:

‘V

X Nearest pointin §



Bad Case #2

* Case 2: There two points s, and s,, in § where s,

is very close to x and s, is very close to y. If so,
can have that

d(x,S) = d(x,sy) = d(y, Sy) =d(y,S)
 Example:
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Attempt #1

* Want S to contain exactly one point p which is
very close to x or y.

* Letd = d(x,y). Pick S so that S has precisely

. e L d .
one point p which is within distance 3 of either x

or y.
* Can be accomplished with constant probability
by taking a random S of the appropriate size.
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Attempt #1

e Attempt #1: Pick S so that S has precisely one
point p which is within distance % of either x or
y.

 Danger: S also contains point(s) of distance
slightly more than gfrom the other point.
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Attempt #1

* Possible fix: Require that S contains exactly one
. L g d
point within distance 3 of x or y and no other

. L s d
points within distance > of x ory

* This implies d¢(x,y) = %

* However, may be too much to ask for...

O)©



Actual Analysis

Def: Given r, p, define B,.(p) = {x:d(x,p) < r}
Foreachi € [1, [log, n]]|, define d; to be

d;, = min{min{r: |B,(x) UB,.(y)| = 21}, g}

Lemma: If S consists of [ﬂ points chosen at
random then P|fs(x,y) = d;+1 — d;] is (1)
Proof: With probability (1),

1.
2.

dp € S:p € By, (x) U By, (¥)
Ap":p' € S,p" # p,min{d(x,p"),d(y,p)} < di;4



Actual Analysis Picture

* |f S consists of [ﬂ points chosen at random then
with probability Q(1):
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Actual Analysis Continued

* Lemma: If S consists of [ﬂ points chosen at

random then with constant probability,
fs(x,y) =2 dipq — d;
 Corollary: Averaging over all i € [1, |logn]], the

expected value of f¢(x,y) is at least () ( 4 )

logn

* Foreachi € [0, [logn]], take O(logn) S of size
2' at random. This ensures that everything is
close to its expectation with high probability.



Actual Analysis Continued

* Full embedding procedure: For eachi €
[0, [logn| — 1], take m = O(logn) S of size 2*
at random. For each such S, create a coordinate

where each point x has value % d(x,S).

* Averaging over many subsets of each size
ensures that everything is close to its
expectation with high probability.



Part IV: Tight Example: Expanders



Expander Graphs

* A vertex/edge expander is a graph G where
every subset of G has a lot of
neighbors/outgoing edges

* Definition: The vertex expansion of a graph G is

IN(S) where

min
5:0<|S|<> S|
N(S) ={v:3u e S:(u,v) € E(G)}

* Definition: The edge expansion of a graph G is
15(S)

min where

s:0<|s|s> 1]
0S) ={(uw,v):uesSves (uv) € E(G))



Observations on Expander Graphs

 Expander graphs are extremely useful in
complexity theory.

* Derandomization: random walks mix well
* Here: Edge expanders have no sparse cuts.

* Proposition: If G has edge expansion ¢ then for
#of edges cut C

all cuts C = (5, S), ¢(C) = > =

NEN n
* Proof: By definition, # of edges cut = c|S| and
S|<n




Constructing Expanders

* With high probability, random graphs are
excellent expanders.

* Constructing expanders explicitly is more

challenging and is an entire field of research on
Its own.



Q(logn) gap with expanders

* Use the distance metric d;; = smallest length of

a path fromitoj.

. . d
* For a d-regular expander with edge expansion "

1 Xiji<jGpes) dij = [E(G)] whichis O(nd)
2. Yiii<j dijis Q(n”log(n)) as most pairs of
vertices are logarithmic distance apart

. . . d
* Linear programming relaxation value: O ( )
nlogn

e Actual value is () (g)

n
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