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Part I: Hardness Reductions for SOS



Promise Problems Over {0,1}𝑛

• Definition: Let 𝐴 be a class of maximization 
problems over {0,1}𝑛.

• We can view 𝐴 as a class of multilinear 
polynomials. With this view, given an instance 
𝑎 ∈ 𝐴, define 𝑣 𝑎 = max{a x : x ∈ {0,1}𝑛}

• Let 𝐴(𝑐1, 𝑐2) to be the problem of distinguishing 
whether v(a) ≥ 𝑐2 or v a ≤ 𝑐1 for some 𝑎 ∈ 𝐴.

• This is a promise problem as we are given a 
promise that either v(a) ≥ 𝑐2 or v a ≤ 𝑐1. If 
𝑐1 < 𝑣 𝑎 < 𝑐2 then we can say anything.



Standard Reductions

• Standard reduction: To show that 𝐴(𝑐1, 𝑐2) can 
be reduced to 𝐵(𝑐1

′ , 𝑐2
′ ), we must give a 

reduction 𝑅: 𝐴 → 𝐵 which satisfies:

1. Soundness: If 𝑣 𝑎 ≤ 𝑐1 then 𝑣 𝑅 𝑎 ≤ 𝑐1
′

2. Completeness: If 𝑣 𝑎 ≥ 𝑐2 then 𝑣 𝑅 𝑎 ≥ 𝑐2
′



SOS Reductions

• How can we show that if problem 𝐴 is hard 
for SOS than so is problem 𝐵?

• One way (done by Tulsiani [Tul09]): Show that 
valid pseudo-expectation values for 𝐴 can be 
transformed into valid pseudo-expectation 
values for 𝐵.

• Simpler way: Look at the dual, 
Positivstellensatz/SOS proofs!



Subtle Point About SOS Proofs

• Setup: We have constraints 𝑠1 𝑥1, … , 𝑥𝑛 = 0,
𝑠2 𝑥1, … , 𝑥𝑛 = 0, etc. and want to prove that 
ℎ < 𝑐.

• There are two subtly different variants of SOS
proofs that ℎ < 𝑐

• An SOS proof that ℎ < 𝑐 is an equality ℎ = 𝑐′ +
σ𝑖 𝑓𝑖𝑠𝑖 − σ𝑗 𝑔𝑗

2 where 𝑐′ < 𝑐. 

• An SOS proof that ℎ ≥ 𝑐 is infeasible is an 
equality −1 = σ𝑖 𝑓𝑖𝑠𝑖 + 𝑓(ℎ − 𝑐 − 𝑧2) + σ𝑗 𝑔𝑗

2

(we effectively add the constraint ℎ = 𝑐 + 𝑧2)



Subtle Point About SOS Proofs

• An SOS proof that ℎ < 𝑐 is an equality ℎ = 𝑐′ +
σ𝑖 𝑓𝑖𝑠𝑖 − σ𝑗 𝑔𝑗

2 where 𝑐′ < 𝑐. 

• An SOS proof that ℎ ≥ 𝑐 is infeasible is an 

equality −1 = σ𝑖 𝑓𝑖𝑠𝑖 + 𝑓(ℎ − 𝑐 − 𝑧2) + σ𝑗 𝑔𝑗
2

• It’s harder to find an SOS proof that ℎ < 𝑐 than 
an SOS proof that ℎ ≥ 𝑐 is infeasible.

• Thus, we show a stronger lower bound if we 
show that there isn’t even an SOS proof that ℎ ≥
𝑐 is infeasible.



SOS Reductions

• SOS variant of 𝐴(𝑐1, 𝑐2): Given an instance 
𝑎 ∈ 𝐴 with value 𝑣 𝑎 ≤ 𝑐1, give an SOS 
proof that 𝑣 𝑎 ≥ 𝑐2 is infeasible.

• Call this variant 𝐴𝑆𝑂𝑆(𝑐1, 𝑐2).



SOS Reductions

• SOS reduction: To show that 𝐴𝑆𝑂𝑆(𝑐1, 𝑐2) can 
be reduced to 𝐵𝑆𝑂𝑆(𝑐1

′ , 𝑐2
′ ), we must give a 

reduction 𝑅: 𝐴 → 𝐵 which satisfies:

1. Soundness: If 𝑣 𝑎 ≤ 𝑐1 then 𝑣 𝑅 𝑎 ≤ 𝑐1
′

2. Completeness: If there is an SOS proof of 

degree 𝑑′ that 𝑣 𝑅 𝑎 ≥ 𝑐2
′ is infeasible then 

there is an SOS proof of degree 𝑑 that 𝑣 𝑎 ≥
𝑐2 is infeasible



Part II: Inapproximability of 
Independent Set



Inapproximability of Independent Set

• Theorem [Hås99]: It is NP-hard to approximate 

independent set within a factor of 𝑁−(1−𝑜(1))

• Here we follow the presentation in Advanced 
Approximation Algorithms Lecture 25 taught by 
Ryan O’Donnell [AAALecture25].



FGLSS Graph

• Given a CSP, the FGLSS graph [FGLSS96] 𝐺𝜱 is as 
follows:

• Have a vertex for each pair (𝐶, 𝑥) where 𝐶 is a 
constraint and 𝑥 is an assignment of values to 
the variables in 𝐶 which satisfies 𝐶

• Have an edge between two vertices (𝐶1, 𝑥1)
and (𝐶2, 𝑥2) if 𝑥1, 𝑥2 disagree on the value of 
some variable.



FGLSS Graph Example

• Constraints C1: x1 = x2, 𝐶2: 𝑥2 = 𝑥3, 𝐶3: 𝑥1 ≠ 𝑥3

(𝐶1, 𝑥1 = 1, 𝑥2 = 1) (𝐶2, 𝑥2 = 1, 𝑥3 = 1) (𝐶3, 𝑥1 = 1, 𝑥3 = 0)

(𝐶1, 𝑥1 = 0, 𝑥2 = 0) (𝐶2, 𝑥2 = 0, 𝑥3 = 0) (𝐶3, 𝑥1 = 0, 𝑥3 = 1)



Independent Set on FGLSS Graph

• Proposition: The size of the largest independent 
set in the FGLSS graph 𝐺𝜱 is equal to the 
maximum number of clauses which can be 
satisfied at the same time. 

• Proof: Given an 𝑥, we can take all vertices (𝐶, 𝑥)
in 𝐺𝜱 which match 𝑥. This is an independent set 
with one vertex for each satisfied clause.

• Conversely, given an independent set 𝐼 in 𝐺𝜱, we 
can find a corresponding 𝑥 by gluing the partial 
assignments together. No two vertices in 𝐼 can 
have the same 𝐶, so 𝐼 ≤ # of satisfied clauses



Capturing Argument with SOS

• How can we capture this argument with SOS?

• Equations we are trying to refute for 
independent set on 𝐺𝜱:

1. ∀ 𝐶, 𝑥 : 𝑣 𝐶,𝑥
2 = 𝑣(𝐶,𝑥)

2. 𝑣(𝐶1,𝑥1)𝑣(𝐶2,𝑥2) = 0 whenever 𝐶1, 𝑥1 , (𝐶2, 𝑥2)
disagree on the value of some 𝑥𝑖.

3. σ(𝐶,𝑥) 𝑣(𝐶,𝑥) ≥ 𝑘

• Given an SOS proof of infeasibility for these 
equations, want an SOS proof that it is 
impossible to satisfy 𝑘 or more clauses. 



Capturing Argument with SOS

• Key idea: The value of each variable 𝑣(𝐶,𝑥) is 
determined by the reduction, simply make this 
substitution!

• Definitions: Define 𝐶(𝑥) to be the multilinear 
polynomial which is 1 if 𝐶 is satisfied and 0
otherwise. Take

𝑣 𝐶,𝑥 = ς𝑖:{𝑥 𝑠𝑒𝑡𝑠 𝑥𝑖=1} 𝑥𝑖 ς𝑖:{𝑥 𝑠𝑒𝑡𝑠 𝑥𝑖=0}(1 − 𝑥𝑖)

• Proposition: 𝐶 𝑥 = σ𝑥: 𝐶,𝑥 ∈𝑉(𝐺𝜱) 𝑣(𝐶, 𝑥)

• Corollary: σ𝐶 𝐶 𝑥 = σ(𝐶,𝑥) 𝑣(𝐶,𝑥)



Boosting the Gap

• By itself, this argument only gives a constant 
gap.

• How can we boost the gap?

• If we don’t care too much about the number 
of clauses or how many variables each clause 
contains, we can use serial repetition.



Serial Repetition

• Serial repetition: Given 𝑚 clauses, each with 𝑎
variables, take the new clauses to be 𝑡-tuples of 
clauses (which are satisfied if and only if all the 
individual clauses are satisfied)

• This gives 𝑚𝑡 clauses which have ≤ 𝑎𝑡 variables.

• If at least k = 𝑠𝑚 of the original clauses could 
be satisfied at the same time, at least 
𝑘𝑡 = 𝑠𝑡𝑚𝑡 of the new clauses can be satisfied.

• Note: Called serial repetition to distinguish it 
from parallel repetition.



Serial Repetition and SOS

• This argument is easily captured by SOS, as it 
boils down to the following:

• If σ𝐶 𝐶(𝑥) ≥ 𝑘 ≥ 0 then σ𝐶 𝐶 𝑥 𝑡 ≥ 𝑘𝑡



Sparsification

• How can we reduce the number of clauses?

• Pick a small subset of clauses at random!

• If at most 𝑠′ fraction of the clauses were 
satisfiable, then for each 𝑥 ∈ {0,1}𝑛, w.h.p. 
roughly 𝑠′ fraction of the subset will be 
satisfied.

• Only have to take a union bound over 2𝑛

possibilities



Lower Bound High Level Picture

1. Start with a CSP (actually, the CSP must also 
have a low number of satisfying 
assignments)

2. Apply serial repetition to amplify the gap

3. Use sparsification to reduce the number of 
clauses

4. Apply the FGLSS graph reduction



In-class Challenge

• In-class challenge: How does SOS capture the 
sparsification argument?

• For this, let’s consider a simplified example. 
Let’s say that the original statement we want 
to refute is σ𝑖=1

𝑚 𝐶𝑖 = 𝑚. Sparsification
corresponds to statements of the form 
σ𝑖∈𝑆 𝐶𝑖 = |𝑆|

• You may consider the case where we have 
SOS proofs that σ𝑖∈𝑆 𝐶𝑖 < |𝑆| w.h.p. (which is 
stronger than having proofs that σ𝑖∈𝑆 𝐶𝑖 = |𝑆|
is infeasible)



In-class Challenge Answer #1

• In-class exercise: How does SOS capture the 
sparsification argument?

• One answer: If we have SOS proofs that 
σ𝑖∈𝑆 𝐶𝑖 < |𝑆| for almost all subsets 𝑆, we can 
take a linear combination of these proofs to 
obtain an SOS proof that σ𝑖=1

𝑚 𝐶𝑖 < 𝑚



In-class Challenge Answer #2

• In-class exercise: How does SOS capture the 
sparsification argument?

• Second answer (which gives the optimal lower 
bound): Our pseudo-expectation values for 
CSPs not only satisfy the constraint that 
σ𝑖=1

𝑚 𝐶𝑖(𝑥) = 𝑚 (where 𝑚 is the number of 
clauses), they in fact satisfy the constraint that 
σ𝑖∈𝑆 𝐶𝑖 𝑥 = |𝑆| for every subset 𝑆 of clauses. 
Thus, there cannot be an SOS proof that 
σ𝑖∈𝑆 𝐶𝑖 𝑥 = |𝑆| is infeasible for any 𝑆.



Part II: 
16

17
-Inapproximability of MAX 

CUT



Parity Checking Gadgets for MAX CUT

• Idea: find graphs 𝑃𝐶0 and 𝑃𝐶1 such that the 
following is true:

1. 𝑃𝐶0 and 𝑃𝐶1 have special vertices labelled 
𝑥1, 𝑥2, 𝑥3, 0

2. More edges can be cut in 𝑃𝐶0 if 𝑥1 + 𝑥2 + 𝑥3 = 0
mod 2 than if 𝑥1 + 𝑥2 + 𝑥3 = 1 mod 2

3. More edges can be cut in 𝑃𝐶1 if 𝑥1 + 𝑥2 + 𝑥3 = 1
mod 2 than if 𝑥1 + 𝑥2 + 𝑥3 = 0 mod 2

• With these gadgets, we can transform our gap 
for 3-XOR into a gap for MAX CUT. 



𝑃𝐶1 Gadget

𝑥1 𝑥2

𝑎𝑢𝑥 𝑎𝑢𝑥

0 𝑥3



𝑃𝐶1 Gadget

• Claim: If 𝑥1 + 𝑥2 + 𝑥3 = 1 mod 2 then 9 of the 
14 edges can be cut. Otherwise, exactly 8 of 
the 14 edges can be cut.

• Proof: To cut 9 edges, we need a cut 𝑆, ҧ𝑆
where 𝑆 = ҧ𝑆 = 3 and both aux vertices are 
on the same side. This is possible if and only if 
𝑥1 + 𝑥2 + 𝑥3 = 1 mod 2.

• If 𝑥1 + 𝑥2 + 𝑥3 = 0 mod 2, we can always find 
a cut 𝑆, ҧ𝑆 where one side has 2 vertices and 
both aux vertices are on the same side



𝑃𝐶1 Gadget Examples

𝑥1 𝑥2

𝑎𝑢𝑥 𝑎𝑢𝑥

0 𝑥3

Edges cut: 
9

14

0

1



𝑃𝐶1 Gadget Examples

𝑥1 𝑥2

𝑎𝑢𝑥 𝑎𝑢𝑥

0 𝑥3

Edges cut: 
8

14

0

1



𝑃𝐶0 Gadget

𝑚𝑖𝑑

𝑎𝑢𝑥 𝑥1

𝑥2

𝑥3

0

𝑎𝑢𝑥

𝑎𝑢𝑥

𝑎𝑢𝑥

𝑚𝑖𝑑

𝑚𝑖𝑑𝑚𝑖𝑑



𝑃𝐶0 Gadget

• Claim: If 𝑥1 + 𝑥2 + 𝑥3 = 0 mod 2 then 16 of 
the 20 edges can be cut. Otherwise, exactly 14
of the 20 edges can be cut.

• Proof idea: Note that it is always optimal for the 
𝑎𝑢𝑥 vertices to be on the opposite side from 
the majority of their non-mid neighbors. Now 
for each of the 𝑚𝑖𝑑 vertices, if their two 
neighbors are on the same side we place the 
𝑚𝑖𝑑 vertex on the opposite side. Otherwise, we 
make an arbitrary choice.



𝑃𝐶0 Gadget Examples

𝑚𝑖𝑑

𝑎𝑢𝑥 𝑥1

𝑥2

𝑥3

0

𝑎𝑢𝑥

𝑎𝑢𝑥

𝑎𝑢𝑥

𝑚𝑖𝑑

𝑚𝑖𝑑𝑚𝑖𝑑

Edges cut: 
16

20

0

1

Doesn’t 
matter



𝑃𝐶0 Gadget Examples

𝑚𝑖𝑑

𝑎𝑢𝑥 𝑥1

𝑥2

𝑥3

0

𝑎𝑢𝑥

𝑎𝑢𝑥

𝑎𝑢𝑥

𝑚𝑖𝑑

𝑚𝑖𝑑𝑚𝑖𝑑

Edges cut: 
16

20

0

1

Doesn’t 
matter



𝑃𝐶0 Gadget Examples

𝑚𝑖𝑑

𝑎𝑢𝑥 𝑥1

𝑥2

𝑥3

0

𝑎𝑢𝑥

𝑎𝑢𝑥

𝑎𝑢𝑥

𝑚𝑖𝑑

𝑚𝑖𝑑𝑚𝑖𝑑

Edges cut: 
14

20

0

1

Doesn’t 
matter



Gap for MAX CUT

• Let 𝑚0 be the number of 0 constraints and let 
𝑚1 be the number of 1 constraints. Without 
loss of generality, 𝑚0 ≥ 𝑚1. 

• For each 0 constraint, take one 𝑃𝐶0 gadget. For 
each 1 constraint, take two 𝑃𝐶1 gadgets.

• Key idea: Every failed constraint gives a penalty 
of two edges. 



Gap for MAX CUT

• If almost all clauses are satisfiable, the max cut 
has size ≈ 16𝑚0 + 18𝑚1 ≤ 17(𝑚0 + 𝑚1)

• If not much more than half the clauses are 
satisfiable, the max cut has size ≈ 16𝑚0 +
18𝑚1 − (𝑚0 + 𝑚1)

• Gap is 
16𝑚0+18𝑚1−(𝑚0+𝑚1)

16𝑚0+18𝑚1
≤

16

17



SOS MAX CUT Reduction

• Need to show that an SOS proof that the 
maximum cut cannot have value more than 
16𝑚0 + 18𝑚1 − 2𝑥 can be transformed into 
an SOS proof that at least 𝑥 constraints must be 
unsatisfied.

• Key idea: Similar to before, substitute 
polynomials for the MAX CUT variables based 
on the reduction



SOS Proof for Gadgets

• Lemma: If 𝑥1, 𝑥2, 𝑥3 ∈ {0,1} then 
ℎ 𝑥1, 𝑥2, 𝑥3 = 1 − 𝑥1𝑥2 − 𝑥1𝑥3 − 𝑥2𝑥3 +
2𝑥1𝑥2𝑥3 is equal to 1 if 𝑥1 + 𝑥2 + 𝑥3 ≤ 1 and is 
equal to 0 if 𝑥1 + 𝑥2 + 𝑥3 ≥ 2



SOS Proof for Gadgets

• If we give value ℎ 𝑥1, 𝑥2, 𝑥3 to the auxiliary 
vertices in 𝐶𝑃1, the number of edges cut will be 
9 if 𝑥1 + 𝑥2 + 𝑥3 = 1 mod 2 and 8 if 𝑥1 + 𝑥2 +
𝑥3 = 0 mod 2.

• We can make similar substitutions for 𝐶𝑃0 so 
that the number of edges cut will be 16 if 𝑥1 +
𝑥2 + 𝑥3 = 0 mod 2 and 14 if 𝑥1 + 𝑥2 + 𝑥3 = 0
mod 2.

• These facts are captured by constant degree 
SOS.



Obtaining an SOS Proof for 3-XOR

• If we apply these substitutions to an SOS proof 
that the maximum cut cannot have value more 
than 16𝑚0 + 18𝑚1 − 2𝑥, we obtain an SOS 
proof that at least 𝑥 constraints must be 
unsatisfied.
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Appendix: Parameter 
Calculations for Independent Set



Parameter Calculations

• Starting parameters:

– 𝑚 clauses

– Each clause has 𝑧 satisfying assignments

– Trying to distinguish between the case when at 
most 𝑠 fraction of the clauses can be satisfied and 
the case when almost all clauses can be satisfied 
(gap is 𝑠)



Parameter Calculations

• After applying parallel repetition 𝑡 times

– 𝑚𝑡 clauses

– Each clause has 𝑧𝑡 satisfying assignments

– Trying to distinguish between the case when at 
most 𝑠𝑡 fraction of the clauses can be satisfied 
and the case when almost all clauses can be 
satisfied (gap is 𝑠𝑡)



Sparsification Parameters

• If at most 𝑠𝑡 proportion of clauses can be 
satisfied, then if we pick 𝑠−𝑡 clauses at 
random, for any 𝑥 ∈ {0,1}𝑛, the number of 
clauses satisfied ≈ Poisson distribution with 
expected value ≤ 1

• Poisson distribution with expected value 1: 

𝑃 𝑘 =
1

𝑒(𝑘!)

• 𝑃 𝑛 ≪ 2−𝑛, so we can assume ≤ 𝑛 clauses 
are satisfied.

• Note: O’Donnell has 𝑚, I’m not sure why…



After Sparsification

• After sparsification:

– 𝑠−𝑡 clauses

– Each clause has 𝑧𝑡 satisfying assignments

– Trying to distinguish between the case when at 
most 𝑚 clauses can be satisfied and the case 
when almost all clauses can be satisfied (gap is 
𝑚𝑠𝑡)



FGLSS Graph

• FGLSS Graph 𝐺𝜱:

– 𝑠−𝑡𝑧𝑡 vertices

– Largest independent set has size ≤ 𝑛 if at most 
𝑠𝑚 of the original clauses were satisfiable. 
Largest independent set has size almost 𝑠−𝑡 if 
almost all the original clauses were satisfiable.

• To get our gap, we need a predicate with  
log 𝑧 ≪ −log(𝑠) (then we can take 𝑡 =
𝑂(log 𝑛))



Finding a Predicate

• To get our gap, we need a predicate with  
log 𝑧 ≪ −log(𝑠)

• This can be done, as shown by the following 
theorem:

• Theorem [Samorodnitsky, Trevisan 00]: For 
any constant 𝑘, there exists a predicate on 
𝑞 ≔ 𝑂(𝑘2) bits with 𝑤 = 2𝑘 satisfying 
assignments for which we have 1 − 𝜖 versus 
2𝑘

2𝑞 + 𝜖 hardness for all 𝜖 > 0.


