
Lecture 10: Gadget Reductions
and SOS

Lecture Outline

• Part I: Hardness Reductions for SOS

• Part II: Inapproximability of Independent Set

• Part III:
16

17
-Inapproximability of MAX CUT

Part I: Hardness Reductions for SOS

Promise Problems Over {0,1}𝑛

• Definition: Let 𝐴 be a class of maximization
problems over {0,1}𝑛.

• We can view 𝐴 as a class of multilinear
polynomials. With this view, given an instance
𝑎 ∈ 𝐴, define 𝑣 𝑎 = max{a x : x ∈ {0,1}𝑛}

• Let 𝐴(𝑐1, 𝑐2) to be the problem of distinguishing
whether v(a) ≥ 𝑐2 or v a ≤ 𝑐1 for some 𝑎 ∈ 𝐴.

• This is a promise problem as we are given a
promise that either v(a) ≥ 𝑐2 or v a ≤ 𝑐1. If
𝑐1 < 𝑣 𝑎 < 𝑐2 then we can say anything.

Standard Reductions

• Standard reduction: To show that 𝐴(𝑐1, 𝑐2) can
be reduced to 𝐵(𝑐1

′ , 𝑐2
′), we must give a

reduction 𝑅: 𝐴 → 𝐵 which satisfies:

1. Soundness: If 𝑣 𝑎 ≤ 𝑐1 then 𝑣 𝑅 𝑎 ≤ 𝑐1
′

2. Completeness: If 𝑣 𝑎 ≥ 𝑐2 then 𝑣 𝑅 𝑎 ≥ 𝑐2
′

SOS Reductions

• How can we show that if problem 𝐴 is hard
for SOS than so is problem 𝐵?

• One way (done by Tulsiani [Tul09]): Show that
valid pseudo-expectation values for 𝐴 can be
transformed into valid pseudo-expectation
values for 𝐵.

• Simpler way: Look at the dual,
Positivstellensatz/SOS proofs!

Subtle Point About SOS Proofs

• Setup: We have constraints 𝑠1 𝑥1, … , 𝑥𝑛 = 0,
𝑠2 𝑥1, … , 𝑥𝑛 = 0, etc. and want to prove that
ℎ < 𝑐.

• There are two subtly different variants of SOS
proofs that ℎ < 𝑐

• An SOS proof that ℎ < 𝑐 is an equality ℎ = 𝑐′ +
σ𝑖 𝑓𝑖𝑠𝑖 − σ𝑗 𝑔𝑗

2 where 𝑐′ < 𝑐.

• An SOS proof that ℎ ≥ 𝑐 is infeasible is an
equality −1 = σ𝑖 𝑓𝑖𝑠𝑖 + 𝑓(ℎ − 𝑐 − 𝑧2) + σ𝑗 𝑔𝑗

2

(we effectively add the constraint ℎ = 𝑐 + 𝑧2)

Subtle Point About SOS Proofs

• An SOS proof that ℎ < 𝑐 is an equality ℎ = 𝑐′ +
σ𝑖 𝑓𝑖𝑠𝑖 − σ𝑗 𝑔𝑗

2 where 𝑐′ < 𝑐.

• An SOS proof that ℎ ≥ 𝑐 is infeasible is an

equality −1 = σ𝑖 𝑓𝑖𝑠𝑖 + 𝑓(ℎ − 𝑐 − 𝑧2) + σ𝑗 𝑔𝑗
2

• It’s harder to find an SOS proof that ℎ < 𝑐 than
an SOS proof that ℎ ≥ 𝑐 is infeasible.

• Thus, we show a stronger lower bound if we
show that there isn’t even an SOS proof that ℎ ≥
𝑐 is infeasible.

SOS Reductions

• SOS variant of 𝐴(𝑐1, 𝑐2): Given an instance
𝑎 ∈ 𝐴 with value 𝑣 𝑎 ≤ 𝑐1, give an SOS
proof that 𝑣 𝑎 ≥ 𝑐2 is infeasible.

• Call this variant 𝐴𝑆𝑂𝑆(𝑐1, 𝑐2).

SOS Reductions

• SOS reduction: To show that 𝐴𝑆𝑂𝑆(𝑐1, 𝑐2) can
be reduced to 𝐵𝑆𝑂𝑆(𝑐1

′ , 𝑐2
′), we must give a

reduction 𝑅: 𝐴 → 𝐵 which satisfies:

1. Soundness: If 𝑣 𝑎 ≤ 𝑐1 then 𝑣 𝑅 𝑎 ≤ 𝑐1
′

2. Completeness: If there is an SOS proof of

degree 𝑑′ that 𝑣 𝑅 𝑎 ≥ 𝑐2
′ is infeasible then

there is an SOS proof of degree 𝑑 that 𝑣 𝑎 ≥
𝑐2 is infeasible

Part II: Inapproximability of
Independent Set

Inapproximability of Independent Set

• Theorem [Hås99]: It is NP-hard to approximate

independent set within a factor of 𝑁−(1−𝑜(1))

• Here we follow the presentation in Advanced
Approximation Algorithms Lecture 25 taught by
Ryan O’Donnell [AAALecture25].

FGLSS Graph

• Given a CSP, the FGLSS graph [FGLSS96] 𝐺𝜱 is as
follows:

• Have a vertex for each pair (𝐶, 𝑥) where 𝐶 is a
constraint and 𝑥 is an assignment of values to
the variables in 𝐶 which satisfies 𝐶

• Have an edge between two vertices (𝐶1, 𝑥1)
and (𝐶2, 𝑥2) if 𝑥1, 𝑥2 disagree on the value of
some variable.

FGLSS Graph Example

• Constraints C1: x1 = x2, 𝐶2: 𝑥2 = 𝑥3, 𝐶3: 𝑥1 ≠ 𝑥3

(𝐶1, 𝑥1 = 1, 𝑥2 = 1) (𝐶2, 𝑥2 = 1, 𝑥3 = 1) (𝐶3, 𝑥1 = 1, 𝑥3 = 0)

(𝐶1, 𝑥1 = 0, 𝑥2 = 0) (𝐶2, 𝑥2 = 0, 𝑥3 = 0) (𝐶3, 𝑥1 = 0, 𝑥3 = 1)

Independent Set on FGLSS Graph

• Proposition: The size of the largest independent
set in the FGLSS graph 𝐺𝜱 is equal to the
maximum number of clauses which can be
satisfied at the same time.

• Proof: Given an 𝑥, we can take all vertices (𝐶, 𝑥)
in 𝐺𝜱 which match 𝑥. This is an independent set
with one vertex for each satisfied clause.

• Conversely, given an independent set 𝐼 in 𝐺𝜱, we
can find a corresponding 𝑥 by gluing the partial
assignments together. No two vertices in 𝐼 can
have the same 𝐶, so 𝐼 ≤ # of satisfied clauses

Capturing Argument with SOS

• How can we capture this argument with SOS?

• Equations we are trying to refute for
independent set on 𝐺𝜱:

1. ∀ 𝐶, 𝑥 : 𝑣 𝐶,𝑥
2 = 𝑣(𝐶,𝑥)

2. 𝑣(𝐶1,𝑥1)𝑣(𝐶2,𝑥2) = 0 whenever 𝐶1, 𝑥1 , (𝐶2, 𝑥2)
disagree on the value of some 𝑥𝑖.

3. σ(𝐶,𝑥) 𝑣(𝐶,𝑥) ≥ 𝑘

• Given an SOS proof of infeasibility for these
equations, want an SOS proof that it is
impossible to satisfy 𝑘 or more clauses.

Capturing Argument with SOS

• Key idea: The value of each variable 𝑣(𝐶,𝑥) is
determined by the reduction, simply make this
substitution!

• Definitions: Define 𝐶(𝑥) to be the multilinear
polynomial which is 1 if 𝐶 is satisfied and 0
otherwise. Take

𝑣 𝐶,𝑥 = ς𝑖:{𝑥 𝑠𝑒𝑡𝑠 𝑥𝑖=1} 𝑥𝑖 ς𝑖:{𝑥 𝑠𝑒𝑡𝑠 𝑥𝑖=0}(1 − 𝑥𝑖)

• Proposition: 𝐶 𝑥 = σ𝑥: 𝐶,𝑥 ∈𝑉(𝐺𝜱) 𝑣(𝐶, 𝑥)

• Corollary: σ𝐶 𝐶 𝑥 = σ(𝐶,𝑥) 𝑣(𝐶,𝑥)

Boosting the Gap

• By itself, this argument only gives a constant
gap.

• How can we boost the gap?

• If we don’t care too much about the number
of clauses or how many variables each clause
contains, we can use serial repetition.

Serial Repetition

• Serial repetition: Given 𝑚 clauses, each with 𝑎
variables, take the new clauses to be 𝑡-tuples of
clauses (which are satisfied if and only if all the
individual clauses are satisfied)

• This gives 𝑚𝑡 clauses which have ≤ 𝑎𝑡 variables.

• If at least k = 𝑠𝑚 of the original clauses could
be satisfied at the same time, at least
𝑘𝑡 = 𝑠𝑡𝑚𝑡 of the new clauses can be satisfied.

• Note: Called serial repetition to distinguish it
from parallel repetition.

Serial Repetition and SOS

• This argument is easily captured by SOS, as it
boils down to the following:

• If σ𝐶 𝐶(𝑥) ≥ 𝑘 ≥ 0 then σ𝐶 𝐶 𝑥 𝑡 ≥ 𝑘𝑡

Sparsification

• How can we reduce the number of clauses?

• Pick a small subset of clauses at random!

• If at most 𝑠′ fraction of the clauses were
satisfiable, then for each 𝑥 ∈ {0,1}𝑛, w.h.p.
roughly 𝑠′ fraction of the subset will be
satisfied.

• Only have to take a union bound over 2𝑛

possibilities

Lower Bound High Level Picture

1. Start with a CSP (actually, the CSP must also
have a low number of satisfying
assignments)

2. Apply serial repetition to amplify the gap

3. Use sparsification to reduce the number of
clauses

4. Apply the FGLSS graph reduction

In-class Challenge

• In-class challenge: How does SOS capture the
sparsification argument?

• For this, let’s consider a simplified example.
Let’s say that the original statement we want
to refute is σ𝑖=1

𝑚 𝐶𝑖 = 𝑚. Sparsification
corresponds to statements of the form
σ𝑖∈𝑆 𝐶𝑖 = |𝑆|

• You may consider the case where we have
SOS proofs that σ𝑖∈𝑆 𝐶𝑖 < |𝑆| w.h.p. (which is
stronger than having proofs that σ𝑖∈𝑆 𝐶𝑖 = |𝑆|
is infeasible)

In-class Challenge Answer #1

• In-class exercise: How does SOS capture the
sparsification argument?

• One answer: If we have SOS proofs that
σ𝑖∈𝑆 𝐶𝑖 < |𝑆| for almost all subsets 𝑆, we can
take a linear combination of these proofs to
obtain an SOS proof that σ𝑖=1

𝑚 𝐶𝑖 < 𝑚

In-class Challenge Answer #2

• In-class exercise: How does SOS capture the
sparsification argument?

• Second answer (which gives the optimal lower
bound): Our pseudo-expectation values for
CSPs not only satisfy the constraint that
σ𝑖=1

𝑚 𝐶𝑖(𝑥) = 𝑚 (where 𝑚 is the number of
clauses), they in fact satisfy the constraint that
σ𝑖∈𝑆 𝐶𝑖 𝑥 = |𝑆| for every subset 𝑆 of clauses.
Thus, there cannot be an SOS proof that
σ𝑖∈𝑆 𝐶𝑖 𝑥 = |𝑆| is infeasible for any 𝑆.

Part II:
16

17
-Inapproximability of MAX

CUT

Parity Checking Gadgets for MAX CUT

• Idea: find graphs 𝑃𝐶0 and 𝑃𝐶1 such that the
following is true:

1. 𝑃𝐶0 and 𝑃𝐶1 have special vertices labelled
𝑥1, 𝑥2, 𝑥3, 0

2. More edges can be cut in 𝑃𝐶0 if 𝑥1 + 𝑥2 + 𝑥3 = 0
mod 2 than if 𝑥1 + 𝑥2 + 𝑥3 = 1 mod 2

3. More edges can be cut in 𝑃𝐶1 if 𝑥1 + 𝑥2 + 𝑥3 = 1
mod 2 than if 𝑥1 + 𝑥2 + 𝑥3 = 0 mod 2

• With these gadgets, we can transform our gap
for 3-XOR into a gap for MAX CUT.

𝑃𝐶1 Gadget

𝑥1 𝑥2

𝑎𝑢𝑥 𝑎𝑢𝑥

0 𝑥3

𝑃𝐶1 Gadget

• Claim: If 𝑥1 + 𝑥2 + 𝑥3 = 1 mod 2 then 9 of the
14 edges can be cut. Otherwise, exactly 8 of
the 14 edges can be cut.

• Proof: To cut 9 edges, we need a cut 𝑆, ҧ𝑆
where 𝑆 = ҧ𝑆 = 3 and both aux vertices are
on the same side. This is possible if and only if
𝑥1 + 𝑥2 + 𝑥3 = 1 mod 2.

• If 𝑥1 + 𝑥2 + 𝑥3 = 0 mod 2, we can always find
a cut 𝑆, ҧ𝑆 where one side has 2 vertices and
both aux vertices are on the same side

𝑃𝐶1 Gadget Examples

𝑥1 𝑥2

𝑎𝑢𝑥 𝑎𝑢𝑥

0 𝑥3

Edges cut:
9

14

0

1

𝑃𝐶1 Gadget Examples

𝑥1 𝑥2

𝑎𝑢𝑥 𝑎𝑢𝑥

0 𝑥3

Edges cut:
8

14

0

1

𝑃𝐶0 Gadget

𝑚𝑖𝑑

𝑎𝑢𝑥 𝑥1

𝑥2

𝑥3

0

𝑎𝑢𝑥

𝑎𝑢𝑥

𝑎𝑢𝑥

𝑚𝑖𝑑

𝑚𝑖𝑑𝑚𝑖𝑑

𝑃𝐶0 Gadget

• Claim: If 𝑥1 + 𝑥2 + 𝑥3 = 0 mod 2 then 16 of
the 20 edges can be cut. Otherwise, exactly 14
of the 20 edges can be cut.

• Proof idea: Note that it is always optimal for the
𝑎𝑢𝑥 vertices to be on the opposite side from
the majority of their non-mid neighbors. Now
for each of the 𝑚𝑖𝑑 vertices, if their two
neighbors are on the same side we place the
𝑚𝑖𝑑 vertex on the opposite side. Otherwise, we
make an arbitrary choice.

𝑃𝐶0 Gadget Examples

𝑚𝑖𝑑

𝑎𝑢𝑥 𝑥1

𝑥2

𝑥3

0

𝑎𝑢𝑥

𝑎𝑢𝑥

𝑎𝑢𝑥

𝑚𝑖𝑑

𝑚𝑖𝑑𝑚𝑖𝑑

Edges cut:
16

20

0

1

Doesn’t
matter

𝑃𝐶0 Gadget Examples

𝑚𝑖𝑑

𝑎𝑢𝑥 𝑥1

𝑥2

𝑥3

0

𝑎𝑢𝑥

𝑎𝑢𝑥

𝑎𝑢𝑥

𝑚𝑖𝑑

𝑚𝑖𝑑𝑚𝑖𝑑

Edges cut:
16

20

0

1

Doesn’t
matter

𝑃𝐶0 Gadget Examples

𝑚𝑖𝑑

𝑎𝑢𝑥 𝑥1

𝑥2

𝑥3

0

𝑎𝑢𝑥

𝑎𝑢𝑥

𝑎𝑢𝑥

𝑚𝑖𝑑

𝑚𝑖𝑑𝑚𝑖𝑑

Edges cut:
14

20

0

1

Doesn’t
matter

Gap for MAX CUT

• Let 𝑚0 be the number of 0 constraints and let
𝑚1 be the number of 1 constraints. Without
loss of generality, 𝑚0 ≥ 𝑚1.

• For each 0 constraint, take one 𝑃𝐶0 gadget. For
each 1 constraint, take two 𝑃𝐶1 gadgets.

• Key idea: Every failed constraint gives a penalty
of two edges.

Gap for MAX CUT

• If almost all clauses are satisfiable, the max cut
has size ≈ 16𝑚0 + 18𝑚1 ≤ 17(𝑚0 + 𝑚1)

• If not much more than half the clauses are
satisfiable, the max cut has size ≈ 16𝑚0 +
18𝑚1 − (𝑚0 + 𝑚1)

• Gap is
16𝑚0+18𝑚1−(𝑚0+𝑚1)

16𝑚0+18𝑚1
≤

16

17

SOS MAX CUT Reduction

• Need to show that an SOS proof that the
maximum cut cannot have value more than
16𝑚0 + 18𝑚1 − 2𝑥 can be transformed into
an SOS proof that at least 𝑥 constraints must be
unsatisfied.

• Key idea: Similar to before, substitute
polynomials for the MAX CUT variables based
on the reduction

SOS Proof for Gadgets

• Lemma: If 𝑥1, 𝑥2, 𝑥3 ∈ {0,1} then
ℎ 𝑥1, 𝑥2, 𝑥3 = 1 − 𝑥1𝑥2 − 𝑥1𝑥3 − 𝑥2𝑥3 +
2𝑥1𝑥2𝑥3 is equal to 1 if 𝑥1 + 𝑥2 + 𝑥3 ≤ 1 and is
equal to 0 if 𝑥1 + 𝑥2 + 𝑥3 ≥ 2

SOS Proof for Gadgets

• If we give value ℎ 𝑥1, 𝑥2, 𝑥3 to the auxiliary
vertices in 𝐶𝑃1, the number of edges cut will be
9 if 𝑥1 + 𝑥2 + 𝑥3 = 1 mod 2 and 8 if 𝑥1 + 𝑥2 +
𝑥3 = 0 mod 2.

• We can make similar substitutions for 𝐶𝑃0 so
that the number of edges cut will be 16 if 𝑥1 +
𝑥2 + 𝑥3 = 0 mod 2 and 14 if 𝑥1 + 𝑥2 + 𝑥3 = 0
mod 2.

• These facts are captured by constant degree
SOS.

Obtaining an SOS Proof for 3-XOR

• If we apply these substitutions to an SOS proof
that the maximum cut cannot have value more
than 16𝑚0 + 18𝑚1 − 2𝑥, we obtain an SOS
proof that at least 𝑥 constraints must be
unsatisfied.

References

• [BGS98] M. Bellare, O. Goldreich, M. Sudan. Free Bits, PCPs, and
Nonapproximability---Towards Tight Results. SIAM J. Comput. 27 (3), p. 804–915,
1998

• [FGLSS96] U. Feige, S. Goldwasser, L. Lovász, S. Safra, M. Szegedy. Interactive
proofs and the hardness of approximating cliques. JACM 34 (2), p. 268-292,
1996.

• [Hås99] J. Håstad. Clique is hard to approximate within n 1−ε . Acta
Mathematica, 182:105–142, 1999.

• [Hås01] Johan Håstad. Some optimal inapproximability results. JACM 48 (4), p. 798–
859, 2001.

• [AAALecture25] R. O’Donnell. Advanced Approximation Algorithms Lecture 25.
April 15, 2008.

• [TSSW00] L. Trevisan, G. Sorkin, M. Sudan, D. Williamson. Gadgets, approximation
and linear programming. SIAM J. Comput. 29, p. 2074–2097, 2000

• [Tul09] M. Tulsiani. CSP gaps and reductions in the lasserre hierarchy. In STOC,
pages 303–312, 2009.

Appendix: Parameter
Calculations for Independent Set

Parameter Calculations

• Starting parameters:

– 𝑚 clauses

– Each clause has 𝑧 satisfying assignments

– Trying to distinguish between the case when at
most 𝑠 fraction of the clauses can be satisfied and
the case when almost all clauses can be satisfied
(gap is 𝑠)

Parameter Calculations

• After applying parallel repetition 𝑡 times

– 𝑚𝑡 clauses

– Each clause has 𝑧𝑡 satisfying assignments

– Trying to distinguish between the case when at
most 𝑠𝑡 fraction of the clauses can be satisfied
and the case when almost all clauses can be
satisfied (gap is 𝑠𝑡)

Sparsification Parameters

• If at most 𝑠𝑡 proportion of clauses can be
satisfied, then if we pick 𝑠−𝑡 clauses at
random, for any 𝑥 ∈ {0,1}𝑛, the number of
clauses satisfied ≈ Poisson distribution with
expected value ≤ 1

• Poisson distribution with expected value 1:

𝑃 𝑘 =
1

𝑒(𝑘!)

• 𝑃 𝑛 ≪ 2−𝑛, so we can assume ≤ 𝑛 clauses
are satisfied.

• Note: O’Donnell has 𝑚, I’m not sure why…

After Sparsification

• After sparsification:

– 𝑠−𝑡 clauses

– Each clause has 𝑧𝑡 satisfying assignments

– Trying to distinguish between the case when at
most 𝑚 clauses can be satisfied and the case
when almost all clauses can be satisfied (gap is
𝑚𝑠𝑡)

FGLSS Graph

• FGLSS Graph 𝐺𝜱:

– 𝑠−𝑡𝑧𝑡 vertices

– Largest independent set has size ≤ 𝑛 if at most
𝑠𝑚 of the original clauses were satisfiable.
Largest independent set has size almost 𝑠−𝑡 if
almost all the original clauses were satisfiable.

• To get our gap, we need a predicate with
log 𝑧 ≪ −log(𝑠) (then we can take 𝑡 =
𝑂(log 𝑛))

Finding a Predicate

• To get our gap, we need a predicate with
log 𝑧 ≪ −log(𝑠)

• This can be done, as shown by the following
theorem:

• Theorem [Samorodnitsky, Trevisan 00]: For
any constant 𝑘, there exists a predicate on
𝑞 ≔ 𝑂(𝑘2) bits with 𝑤 = 2𝑘 satisfying
assignments for which we have 1 − 𝜖 versus
2𝑘

2𝑞 + 𝜖 hardness for all 𝜖 > 0.

