Lecture 14: Planted Sparse Vector

Lecture Outline

- Part I: Planted Sparse Vector and 2 to 4 Norm
- Part II: SOS and 2 to 4 Norm on Random Subspaces
- Part III: Warmup: Showing $||x|| \approx 1$
- Part IV: 4-Norm Analysis
- Part V: SOS-symmetry to the Rescue
- Part VI: Observations and Loose Ends
- Part VII: Open Problems

Part I: Planted Sparse Vector and 2 to 4 Norm

Planted Sparse Vector

- Planted Sparse Vector problem: Given the span of d-1 random vectors in \mathbb{R}^n and one unit vector $v \in \mathbb{R}^n$ of sparsity k, can we recover v?
- More precisely, let V be an $n \times d$ matrix where:
 - 1. d-1 columns of V are vectors of length ≈ 1 chosen randomly from \mathbb{R}^n
 - 2. One column of V is a unit vector v with $\leq k$ nonzero entries.
- Given VR where R is an arbitrary invertible $d \times d$ matrix, can we recover v?

Theorem Statement

• Theorem 1.4 [BKS14]: There is a constant c > 0and an algorithm based on constant degree SOS such that for every vector v_0 supported on at most $cn \cdot \min\{1, n/d^2\}$ coordinates, if v_1, \dots, v_d are chosen independently at random from the Gaussian distribution on \mathbb{R}^n , then given any basis for $V = span\{v_0, ..., v_d\}$, the algorithm outputs an ϵ -approximation to v_0 in $poly(n, \log(1/\epsilon))$ time.

Random Distribution

- Random Distribution: We choose each entry of V independently from $N\left(0,\frac{1}{n}\right)$, the normal distribution with mean 0 and standard deviation $\frac{1}{\sqrt{n}}$
- We then choose R to be a random $d \times d$ orthogonal/rotation matrix and take VR to be our input matrix.

Random Distribution

- Remark: If R is any $d \times d$ orthogonal/rotation matrix then VR can also be chosen by taking each entry of V independently from $N\left(0,\frac{1}{n}\right)$.
- Idea: Each row of V comes from a multivariate normal distribution with covariance matrix $\frac{1}{n}Id_d$, which is invariant under rotations

Planted Distribution

- Planted Distribution: We choose each entry of the first d-1 columns of V independently from $N\left(0,\frac{1}{n}\right)$. The last column of V is our sparse unit vector v.
- We then choose R to be a random $d \times d$ orthogonal/rotation matrix and take VR to be our input matrix.

Output

- We ask for an x such that
 - 1. ||VRx|| = 1
 - 2. VRx is k-sparse (i.e. at most k indices of VRx are nonzero).
- Hard to search for x such that VRx is k-sparse, so we'll need to relax the problem.

Distinguishing Sparse Vectors

- Key idea: All unit vectors have the same 2-norm.
 However, sparse vectors will have higher 4-norm.
- 4-norm for a k-sparse unit vector in \mathbb{R}^n is at
 - least $\sqrt[4]{\mathbf{k} \cdot \frac{1}{k^2}} = \frac{1}{\sqrt[4]{k}}$ (obtained by setting k coordinates to $\frac{\pm 1}{\sqrt{k}}$ and the rest to 0)
- Relaxation Attempt #1: Search for an x such that
 - 1. ||VRx|| = 1
 - 2. $||VRx||_4 \ge \frac{1}{\sqrt[4]{k}}$

2 to 4 Norm Problem

• This is the 2 to 4 Norm Problem: Given a matrix A, find the vector x which maximizes $\frac{\|Ax\|_4}{\|Ax\|}$

Part II: SOS and 2 to 4 Norm on Random Subspaces

2 to 4 Norm Hardness

- Unfortunately, the 2 to 4 norm problem is hard [BBH+12]:
 - NP-hard to obtain an approximation ratio of

$$\left(1 + \frac{1}{npolylog(n)}\right)$$

- Assuming ETH (the exponential time hypothesis), it is hard to approximate to within a constant factor.
- Thus, we'll need to relax our problem further.

SOS Relaxation

• Relaxation: Find \tilde{E} which respects the following constraints:

1.
$$||VRx||^2 = \sum_{i=1}^n (VRx)_i^2 = 1$$

2.
$$||VRx||_4^4 = \sum_{i=1}^n (VRx)_i^4 \ge \frac{1}{k}$$

Showing a Distinguishing Algorithm

Constraints:

1.
$$||VRx||^2 = \sum_{i=1}^n (VRx)_i^2 = 1$$

2.
$$||VRx||_4^4 = \sum_{i=1}^n (VRx)_i^4 \ge \frac{1}{k}$$

- To show that SOS distinguishes between the random and planted distribution, it is sufficient to show that there is no \tilde{E} which respects these constraints and has a PSD moment matrix M.
- Remark: Although the 2 to 4 Norm problem is hard in general, we just need to show that SOS can approximate it on random subspaces.

2 to 4 Norm on Random Subspaces

- Given a random subspace, what is the expected value of the largest 4-norm of a unit vector in the subspace?
- Trivial strategy: Any unit vector's 4-norm is at least $\frac{1}{\sqrt[4]{n}}$.
- Can we do better?

2 to 4 Norm on Random Subspaces

- Another strategy: Take a basis for this space and take a linear combination which maximizes one coordinate (subject to having length 1)
- If we add together d random vectors with entries $pprox \pm \frac{1}{\sqrt{n}}$, w.h.p. the result will have norm $\widetilde{\Theta}\Big(\sqrt{d}\Big)$. Diving the resulting vector by $\widetilde{\Theta}\Big(\sqrt{d}\Big)$, the maximized entry will have magnitude $\widetilde{\Theta}\Big(\frac{\sqrt{d}}{\sqrt{n}}\Big)$, other entries will have magnitude $\widetilde{O}\Big(\frac{1}{\sqrt{n}}\Big)$

2 to 4 Norm on Random Subspaces

- Calling our final result w, w.h.p. the maximized entry of w contributes $\widetilde{\Theta}\left(\frac{d^2}{n^2}\right)$ to $\|w\|_4^4$ while the other entries contribute $\widetilde{\Theta}\left(\frac{1}{n}\right)$.
- It turns out that this strategy is essentially optimal. Thus, with high probability the maximum 4-norm of a unit vector in a d-dimensional random subspace will be $\widetilde{\Theta}\left(\max\left\{\frac{\sqrt{d}}{\sqrt{n}},\frac{1}{\frac{4}{\sqrt{n}}}\right\}\right)$.

Algorithm Boundary

- Planted dist: max 4-norm $\geq \frac{1}{\sqrt[4]{k}}$
- Random dist: max 4-norm is $\widetilde{\Theta}\left(\max\left\{\frac{\sqrt{d}}{\sqrt{n}},\frac{1}{\sqrt[4]{n}}\right\}\right)$.
- IF SOS can certify the upper bound for a random subspace, this gives a distinguishing algorithm when $\max\left\{\frac{\sqrt{d}}{\sqrt{n}},\frac{1}{\sqrt[4]{n}}\right\} \ll \frac{1}{\sqrt[4]{k}}$ (which happens when $d \leq \sqrt{n}$ and $k \ll n$ or when $d \geq \sqrt{n}$ and $k \ll \frac{n^2}{d^2}$)

Part III: Warmup: Showing $||x|| \approx 1$

Showing $||x|| \approx 1$

- Take w = VRx.
- We expect that $||w|| \approx ||x||$. Since we require that ||w|| = 1, this implies that we will have $||x|| \approx 1$
- To check that $||w|| \approx ||x||$, observe that $||w||_2^2 = x^T (RV)^T (VR) x$. Thus, it is sufficient to show that $(RV)^T (VR) \approx Id$.

Checking $(RV)^{T}(VR) \approx Id$

- We have that $(RV)^T(VR) \approx Id$ because the columns of VR are d random unit vectors (where $d \ll n$) and are thus approximately orthonormal.
- However, we will use graph matrices to analyze the 4-norm, so as a warm-up, let's check that $(RV)^T(VR) \approx Id$ using graph matrices.

Graph Matrices Over N(0,1)

- So far we have worked over $\{-1, +1\}^m$.
- How can we use graph matrices over $N(0,1)^m$?
- Key idea: Look at the Fourier characters over N(0,1).

Fourier Analysis Over N(0,1)

- Inner product on N(0,1): $f \cdot g = E_{x \sim N(0,1)} f(x) g(x)$
- Fourier characters: Hermite polynomials
- The first few Hermite polynomials (up to normalization) are as follows:
 - 1. $h_0 = 1$
 - 2. $h_1 = x$
 - 3. $h_2 = x^2 1$
 - 4. $h_3 = x^3 3x$
- To normalize, divide h_j by $\sqrt{j!}$

Graph Matrices Over N(0,1)

- Graph matrices over $\{-1,1\}^m$: 1 and x are a basis for functions over $\{-1,1\}$. We represent x by an edge and 1 by the absence of an edge
- Graph matrices over $N(0,1)^m$: $\{h_j\}$ are a basis for functions over N(0,1). We represent h_j by a multi-edge with multiplicity j.

Graph Matrices for (RV)^T(VR)

- For convenience, take $A = \sqrt{nRV}$ and think of the entries of A as the input. Now each entry of A is chosen independently from N(0,1)
- A_{ij} is represented by an edge from node i to node j.
- In class challenge: What is $(RV)^T(VR)$ in terms of graph matrices?

$$\frac{1}{n}$$
 $\underbrace{\begin{pmatrix} j_1 \end{pmatrix}}_{d}$ $\underbrace{\begin{pmatrix} i \end{pmatrix}}_{n}$ \times $\underbrace{\begin{pmatrix} i \end{pmatrix}}_{d}$

Graph Matrices for (RV)^T(VR)

In class challenge answer:

$$\frac{1}{n} \underbrace{j_1}_{d} \underbrace{i}_{n} \times \underbrace{i}_{n} \underbrace{j_2}_{d} = \underbrace{\frac{1}{n}}_{d} \underbrace{j_1}_{d} + \underbrace{\frac{1}{n}}_{d} \underbrace{j_2}_{d} + \underbrace{\frac{1}{n}}_{d} \underbrace{j_1}_{d} + \underbrace{\frac{1}{n}}_{d} \underbrace{j_2}_{d}$$

Generalizing Rough Norm Bounds

- Here we have two different types of vertices, one for the rows of A (which has n possibilities) and one for the columns of A (which has d possibilities)
- Can generalize the rough norm bounds to handle multiple types of vertices (writing this up is on my to-do list)

Generalizing Rough Norm Bounds

- Generalized rough norm bounds:
- Each isolated vertex outside of *U* and *V* contributes a factor equal to the number of possibilities for that vertex
- Each vertex in the minimum separator (which minimizes the total number of possibilities for its vertices) contributes nothing
- Each other vertex contributes a factor equal to the square root of the number of possibilities for that vertex

Norm Bounds for $(RV)^{T}(VR)$

Part IV: 4-Norm Analysis

4-Norm Analysis

- We want to bound $\left\| \frac{1}{\sqrt{n}} Ax \right\|_4^4$
- Take B to be the matrix with entries $B_{i,(j_1,j_2)}=A_{ij_1}A_{ij_2}$
- $\cdot \left\| \frac{1}{\sqrt{n}} A x \right\|_{4}^{4} = \frac{1}{n^{2}} (x \otimes x)^{T} B^{T} B (x \otimes x)$
- Can try to bound $||B^TB||$

Picture for B^TB

• Picture for B^TB :

Targets

- If $d \le \sqrt{n}$, the target norm bound on B^TB is $\widetilde{O}(n)$, giving a bound of $\widetilde{O}\left(\frac{1}{n}\right)$ on $\|VRx\|_4^4$.
- If $d \ge \sqrt{n}$, the target norm bound on B^TB is $\widetilde{O}(d^2)$, giving a bound of $\widetilde{O}\left(\frac{d^2}{n^2}\right)$ on $\|VRx\|_4^4$

Casework

Casework

Note: 0 or 2 edges between i and j_1 , 0 or 2 edges between i and j_2

between i and j_1 and between i and j_2

Turns out to be 3Id + Norm $\tilde{O}(\sqrt{n})$

Note: 0,2, or 4 edges between i and j_1

Summary

- Most cases have sufficiently small norm.
- Two cases have a norm which is too large, so norm bounds alone are not enough...

Part V: SOS-Symmetry to the Rescue

Key Idea: Rearranging Indices

• Instead of looking at $\max_{w:||w||=1} w^T B^T B w$, we only need to upper bound

$$\max_{x:||x||=1} (x \otimes x)^T B^T B(x \otimes x)$$

• As far as $(x \otimes x)^T B^T B(x \otimes x)$ is concerned, we can rearrange indices in pieces of $B^T B$.

Rearranging Indices Case #1

Rearranging Indices Case #2

Effect of Rearranging Indices

- For the two cases whose norm is too high, their norm can be reduced by rearranging indices.
- This proves the upper bound on

$$\max_{x:||x||=1} (x \otimes x)^T B^T B(x \otimes x)$$

Part VI: Observations and Loose Ends

Observations: 4-Norm Analysis

- Note: This 4-norm analysis roughly corresponds to p.33-37 of [BBH+12]
- Remark: When $d \ll \sqrt{n}$, with a slightly more careful analysis we can show that $(x \otimes x)^T B^T B(x \otimes x) = (3 \pm o(1)) ||x||_2^4$, matching the results in [BBH+12].

Loose Ends: Arbitrary R

- How can we handle arbitrary R rather than a random orthogonal R (i.e. any span of the vectors)?
- SOS handles it automatically!
- Idea: The SOS-symmetry and $M \ge 0$ constraints are invariant under linear transformations of the variables. Thus, having a different R merely applies a linear transformation to the pseudo-expectation values.

Loose Ends: Finding v Exactly

- We have only shown a distinguishing algorithm between the random and planted cases. How can we find the planted sparse vector v exactly?
- Can be done in two steps:
 - 1. The analysis shows that degree 4 SOS will output a vector v' which is highly correlated with v (because the random part of the subspace has nothing with high 4-norm)
 - 2. Using v' as a guide, find v. This can be done by minimizing then L^1 norm of a vector v in the subspace subject to $v \cdot v' = 1$, see [BKS14] for details.

Part VII: Open Problems

Open Problems

- What more can we say when $d \gg \sqrt{n}$?
- More specifically, can we find a better algorithm using more than the 4-norm? Is there an SOS lower bound showing that $k = \frac{n^2}{d^2}$ is tight?

References

- [BBH+12] B. Barak, F. G. S. L. Brandão, A. W. Harrow, J. A. Kelner, D. Steurer, and Y. Zhou. Hypercontractivity, sum-of-squares proofs, and their applications. STOC p. 307–326, 2012.
- [BKS14] B. Barak, J. A. Kelner, and D. Steurer. Rounding Sum of Squares Relaxations. STOC 2014.