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Part |: Planted Sparse Vector and
2to4 Norm



Planted Sparse Vector

* Planted Sparse Vector problem: Given the span
of d — 1 random vectors in R™ and one unit
vector v € R" of sparsity k, can we recover v?

* More precisely, let V be an n X d matrix where:

1. d — 1 columns of V are vectors of length = 1
chosen randomly from R"

2. One column of V is a unit vector v with < k
nonzero entries.

 Given VR where R is an arbitrary invertible d X d
matrix, can we recover v?



Theorem Statement

e Theorem 1.4 [BKS14]: Thereis a constantc > 0
and an algorithm based on constant degree SOS
such that for every vector vy supported on at
most cn - min{1,n/d*} coordinates, if vy, ..., V4
are chosen independently at random from the
Gaussian distribution on R"™, then given any
basis for V = span{v,, ..., v}, the algorithm
outputs an e-approximation to vy in

poly(n,log(1/€)) time.



Random Distribution

 Random Distribution: We choose each entry of I/

independently from N (O, 1), the normal

n

distribution with mean 0 and standard deviation
1

\/ﬁ
 We then choose R to bearandomd X d
orthogonal/rotation matrix and take VR to be

our input matrix.



Random Distribution

 Remark: If R is any d X d orthogonal/rotation

matrix then VR can also be chosen by taking

each entry of V independently from N (O, l).

n

 |dea: Each row of V comes from a multivariate

T . . 1
normal distribution with covariance matrlxgldd,

which is invariant under rotations



Planted Distribution

* Planted Distribution: We choose each entry of

the first d — 1 columns of V independently from

1

N (O, ﬁ)' The last column of V is our sparse unit

vector v.

 We then choose R to bearandomd X d
orthogonal/rotation matrix and take VR to be

our input matrix.



Output

e \We ask for an x such that

1. ||[VRx|| =1
2. VRx is k-sparse (i.e. at most k indices of VRx are
nonzero).

* Hard to search for x such that VRx is k-sparse,
so we’ll need to relax the problem.



Distinguishing Sparse Vectors

e Key idea: All unit vectors have the same 2-norm.
However, sparse vectors will have higher 4-norm

* 4-norm for a k-sparse unit vector in R™ is at

4 1 . .
least /k i \/_ (obtained by setting k
1

_I_
coordinates to —= 7 ane the rest to 0)

* Relaxation Attempt #1: Search for an x such that
1. |[[VRx|| =1




2 to 4 Norm Problem

e Thisis the 2 to 4 Norm Problem: Given a matrix
| Ax|| 4

| Ax|

A, find the vector x which maximizes



Part II: SOS and 2 to 4 Norm on
Random Subspaces



2 to 4 Norm Hardness

e Unfortunately, the 2 to 4 norm problem is hard
[BBH+12]:

— NP-hard to obtain an approximation ratio of

1
(1 T npolylog(n))
— Assuming ETH (the exponential time hypothesis), it is
hard to approximate to within a constant factor.

* Thus, we’ll need to relax our problem further.



SOS Relaxation

* Relaxation: Find E which respects the following
constraints:

1. |IVRx||? =YX~ ,(VRx)? =1
2. |IVRx|l} = X%, (VR)} =+




Showing a Distinguishing Algorithm

e Constraints:
1. |I[VRx||? =Y~ (VRx)? =1
2. |IVRxl} = X, (VRx)} = -

* To show that SOS distinguishes between the
random and planted distribution, it is sufficient
to show that there is no E which respects these
constraints and has a PSD moment matrix M.

 Remark: Although the 2 to 4 Norm problem is
hard in general, we just need to show that SOS
can approximate it on random subspaces.



2 to 4 Norm on Random Subspaces

* Given a random subspace, what is the expected
value of the largest 4-norm of a unit vector in
the subspace?

* Trivial strategy: Any unit vector’s 4-norm is at
1

e Can we do better?

least



2 to 4 Norm on Random Subspaces

* Another strategy: Take a basis for this space and
take a linear combination which maximizes one
coordinate (subject to having length 1)

 |f we add together d random vectors with entries

1 i ©
~ iﬁ' w.h.p. the result will have norm (9(\/3)

Diving the resulting vector by @(ﬁ), the

maximized entry will have magnitude O (ﬁ),
1

NiD
other entries will have magnitude O (\/_ﬁ)



2 to 4 Norm on Random Subspaces

* Calling our final result w, w.h.p. the maximized

. ~ (d? .
entry of w contributes © (—) to [|w|| while the

n2

. . ~ (1
other entries contribute ® (ﬁ)

* |t turns out that this strategy is essentially
optimal. Thus, with high probability the
maximum 4-norm of a unit vector in a d-
dimensional random subspace will be

0 (max {72, 7=)
max N YA




Algorithm Boundary

1

e Planted dist: max 4-norm = +—
— Yk

- o vd 1
Random dist: max 4-norm is ©® (max {\/ﬁ’ %})
* |F SOS can certify the upper bound for a

random subspace, this gives a distinguishing

. Vd 1 1 .
algorithm when max {\m, 7 n} K = (which

happens when d < \/n and k < n or when
2
d>+nandk < %



Part Ill: Warmup: Showing ||x|| = 1



Showing ||x|| = 1

e Takew = VRx.

* We expect that |[|w]| = [|x]||. Since we require

that |[|w]|| = 1, this implies that we will have
lx]| =~ 1

* To check that ||[w]|| = ||x]|, observe that ||w||5 =
xT(RV)T(VR)x. Thus, it is sufficient to show that
(RV)T(VR) = Id.



Checking (RV)T(VR) = Id

e We have that (RV)T(VR) = Id because the
columns of VR are d random unit vectors
(where d < n) and are thus approximately
orthonormal.

* However, we will use graph matrices to analyze
the 4-norm, so as a warm-up, let’s check that

(RV)T(VR) = Id using graph matrices.



Graph Matrices Over N(0,1)

* So far we have worked over {—1, +1}™.

* How can we use graph matrices over N(0,1)™?

* Key idea: Look at the Fourier characters over
N(0,1).



Fourier Analysis Over N(0,1)

Inner producton N(0,1): f - g =

Exnoonf(x)g(x)
Fourier characters: Hermite polynomials

The first few Hermite polynomials (up to
normalization) are as follows:

1.
2.
3.
4.

hy = 1
hi =x

h, =x?—1
hy = x3 — 3x

To normalize, divide h; by \/f



Graph Matrices Over N(0,1)

* Graph matrices over {—1,1}": 1 and x are a
basis for functions over {—1,1}. We represent x
by an edge and 1 by the absence of an edge

* Graph matrices over N(0,1)™: {h;} are a basis
for functions over N(0,1). We represent h; by a
multi-edge with multiplicity j.



Graph Matrices for (RV)T(VR)

* For convenience, take A = \/nRV and think of
the entries of A as the input. Now each entry of

A is chosen independently from N(0,1)
* A;jisrepresented by an edge from node i to

node j.
* In class challenge: What is (RV)T(VR) in terms
of graph matrices?

. 0O x O—®

n d n n d



S|

Graph Matrices for (RV)T(VR)

* |n class challenge answer:

n d
n@ n@
O-O—® |+ :|D|+2|D
d N d nf d nilod
U V U=V U=V




Generalizing Rough Norm Bounds

 Here we have two different types of vertices,
one for the rows of A (which has n possibilities)
and one for the columns of A (which has d

possibilities)

* Can generalize the rough norm bounds to handle
multiple types of vertices (writing this up is on
my to-do list)



Generalizing Rough Norm Bounds

Generalized rough norm bounds:

Each isolated vertex outside of U and V
contributes a factor equal to the number of
possibilities for that vertex

Each vertex in the minimum separator (which
minimizes the total number of possibilities for its
vertices) contributes nothing

Each other vertex contributes a factor equal to
the square root of the number of possibilities for
that vertex



Norm Bounds for (RV)T(VR)
: >< :
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Part IV: 4-Norm Analysis



4-Norm Analysis

4
1

Vool
Take B to be the matrix with entries Bi,(j1,j2) =
A:: A

Lj1° 712

We want to bound AX|

4

1 _ 1 TRT
= 4_n2(x®x)BB(x®X)

Can try to bound ||BT B

Ax




Picture for B'B

* Picture for BT B:




Targets

* If d < +/n, the target norm bound on BB is
O(n), giving a bound of O (%) on ||VRx]||4.

* If d > +/n, the target norm bound on BT B is
0(d?), giving a bound of O( ) on ||VRx||4



Casework

(J3)
30
(J2) (J)
@ Norm 5(d\/ﬁ)
d | ifd <4/n,
norm 0(d?) if
d > +\n
v




Casework

Note: 0 or 2 edges
between i and j;



Note: 0 or 2 edges
between i and j;,
0 or 2 edges
between i and j,

Casework

= nld + Norm

6(vm)



Casework

Note: 0 or 2 edges
between i and j;

@_

d

U

Note: O or 2 edges

between i and j;

Norm O (W)

Too large!



Casework

Note: 0 or 2 edges
between i and j;

Note: 1 or 3 edges
between i and j;




Casework

Note: O or 2 edges
between i and j; and

between i and j,

d

Note: O or 2 edgesU

between i and j; and
between i and j,

Norm O (nd)
Too large!



Casework

Note: O or 2 edges " n
between i and j; on
both ends v
Turns out to be
31d + Norm
U=V O(W)

Note: 0,2, or 4 edges
between i and j;



Summary

* Most cases have sufficiently small norm.

* Two cases have a norm which is too large, so
norm bounds alone are not enough...



Part V: SOS-Symmetry to the
Rescue



Key Idea: Rearranging Indices

e Instead of looking at max 1WTBTBW, we only
WIlIWI|=

need to upper bound
max (x ® x)'BT'B(x ® x)

x:||x[|=1
e Asfaras (x ® x)'BTB(x @ x) is concerned, we
can rearrange indices in pieces of BT B.



Rearranging Indices Case #1

o 0 g OO

rearranging indices
v D —> v

d @ """" @ """" @
d n d
(2) ; ”

d

U=V



Rearranging Indices Case

2
x 609 0




Effect of Rearranging Indices

* For the two cases whose norm is too high, their
norm can be reduced by rearranging indices.

* This proves the upper bound on
max (x @ x)'B'B(x ® x)

x:||x|[=1



Part VI: Observations and Loose Ends



Observations: 4-Norm Analysis

* Note: This 4-norm analysis roughly
corresponds to p.33-37 of [BBH+12]

« Remark: When d < /n, with a slightly
more careful analysis we can show that

(x @ x)"BTB(x @ x) = (3 £ o(1))lIx|I3,
matching the results in [BBH+12].



Loose Ends: Arbitrary R

* How can we handle arbitrary R rather than a
random orthogonal R (i.e. any span of the
vectors)?

* SOS handles it automatically!

* |dea: The SOS-symmetry and M = 0 constraints
are invariant under linear transformations of the
variables. Thus, having a different R merely
applies a linear transformation to the pseudo-
expectation values.



Loose Ends: Finding v Exactly

 We have only shown a distinguishing algorithm
between the random and planted cases. How
can we find the planted sparse vector v exactly?

* Can be done in two steps:

1. The analysis shows that degree 4 SOS will output a
vector v' which is highly correlated with v (because

the random part of the subspace has nothing with
high 4-norm)

2. Using v’ as a guide, find v. This can be done by

minimizing then L' norm of a vector v in the

subspace subject to v - v' = 1, see [BKS14] for
details.



Part VII: Open Problems



Open Problems

« What more can we say when d > /n?

 More specifically, can we find a better algorithm

using more than the 4-norm? Is there an SOS
2
lower bound showing that k = n—z is tight?
d
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