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Linear Programming

* Linear Programming: Want to optimize a linear
function over linear equalities and inequalities.

* Example: Maximize f(x,y,z) = 3x + 4y + 5z
when
1. x+y+z=1

2. x=20
3. y=0
4. z =0

* Answer:x =y =0,z=1,f(x,y,z) =5



Example: Directed Connectivity

* Directed connectivity: Is there a path from s =
x1tot = x,, in adirected graph G?

* Linear program: Minimize x,, subject to
1. x;=1
2. xj = x; wheneverx; - x; € E(G)
3. Vi,x; =0

e Answeris 1if thereisapathfromstotinG
and 0 otherwise.



Example: Maximum Flow

* Max flow: Given edge capacities c;; for each

edge x; = x; in G, what is the maximum flow

froms=x;tot =x,,?

* Example:




Example Answer: 15

* Answer: 15. Actual flow is red/purple, capacity
is blue/purple.




Max Flow Equations

* Take x;; = flow from i toj
* Recall: ¢;; is the capacity from i to j

* Program: Maximize x,; subject to

1. Vi,j,0< Xij < Cij (no capacity is exceeded, no
negative flow)

2. Vi1 Xji = Xj=1 xij (flow in = flow out)



In-class Exercise

* Shortest path problem: Given a directed graph
G with lengths [;; on the edges, what is the

shortest path froms =x;tot = x, in G?

* Exercise: Express the shortest path problem as
a linear program.



In-class Exercise Answer

* Shortest path problem: How long is the shortest

path from s = x; tot = x,, in a directed graph
G?

* Linear Program: Have variables d; representing
the distance of vertex x; from vertex s = x;.
Maximize d,, subject to

1. di =0

2. Vi, j,d; <d;+l;; where [;; is the length of the
edge from x; to x;



Canonical Form

Tx subject to

e Canonical form: Maximize c
1. Ax<b

2. x=0



Putting Things Into Canonical Form

e Canonical form: Maximize c'x subject to
1. Ax<b
2. x=0

* To put a linear program into canonical form:
1. Replace each equality aiTx = b; with two
inequalities a] x < b; and —a] x < —b;
2. In each expression, replace x; with (x;-’—xj_)

where xj+, x]-_ are two new variables.



Slack Form

Tx subject to

e Slack form: Maximize c
1. Ax=0b>

2. x=0



Putting Things Into Slack Form

e Slack form: Maximize c'x subject to
1. Ax=D»b
2. x=0

* To put a linear program into slack form from
canonical form, simply add a slack variable for
each inequality.

n n —
i=1a;jx; < by & (Xj=1a4;xj) +5; = b, s, =0



Part Il: Von Neumann’s Minimax
Theorem and Linear Programming
Duality



Linear Programming Duality

Tx subject to

Primal: Maximize c
1. Ax<b

2. x=0

Dual: Minimize b’y subject to

1. Aly>c¢

2. y=0

Observation: For any feasible x,y, c'x < bTy

because
c'x <yTAx =y"(Ax—b) +y"b < by

Strong duality: ¢'x = by at optimal x, y



Heart of Duality

Game: Have a function f: X XY — R.

X player wants to minimize f(x,y), Y player
wants to maximize f(x,y)

Obvious: Better to go second, i.e

maxmin f(x,y) < min max f (x,
yEY xEXf( y) xXEX yEYf( y)

Minimax theorems: Under certain conditions,

maxmin f(x,y) = minmaxf(x,y) !
yey xEXf( y) XEX yEYf( y)



Von Neumann’s Minimax Theorem

 Von Neumann [1928]: If X and Y are convex
compact subsets of R™ and R"and f: X XY —
R is a continuous function which is convex in X
and concave in Y then

maxmin f(x,y) = minmax f (x,
yEY xEXf( y) XEX yEYf( y)

 These conditions are necessary (see problem
set)



Example

* Let X =Y = [—1,1] and consider the function
flx,y) = xy.

* If the x player goes first and plays x = .5, the y
player should play y = 1, obtaining f(x,y) =
5

 |f the x player goes first and plays x = —.5, the
y player should play y = —1, obtaining
flx,y) =5

 The best play for the x player is x = 0 as then
f(x,y) = 0 regardless of what vy is.



Connection to Nash Equilibria

Recall: X player wants to minimize f(x,y),Y
player wants to maximize f (x,y).

If (x*,y") is a Nash equilibrium then
f(x*,y*) < maxmin f(x,y)

yeY xeX

_rjglel)r(lr;lggf(x,y)_f(x V')

Note: Since f is convex in x and concave in v,
pure strategies are always optimal.

However, this is circular: proof that Nash
equilibria exist = proof of minimax theorem



Minimax Theorem Proof Sketch

 Proofidea:

1. DefineafunctionT: X XY — X XY so that
T(x,y) = (x,y) if and only if (x,y) is a Nash
equilibrium.

2. Use Brouwer’s fixed point theorem to argue that T
must have a fixed point.



Attempt #1

 We could try to define T as follows

1. Starting from (x,y), take x’ to be the closest point
to x which minimizes f(x', y).

2. Now take y' to be the closest point to y which
maximizes f(x',y")

3. TakeT(x,y) = (x',y")
* T(x,y) = (x,y) < (x,y) is a Nash equilibrium.



Brouwer’s Fixed Point Theorem

* Brouwer’s fixed point theorem: If X is a convex,
compact subset of R™ then any continuous map
f: X — X has a fixed point

* Example: Any continuous function f: D? - D?
has a fixed point.




Correct function T

* Problem: Previous T may not be continuous!
 Correct T: Starting from (x, y):

1. Define A(xz) = f(x,y) — fx2,¥) if f(x2,¥) <
f(x,y) and A(x,) = 0 otherwise.

2. Take x' = “Hlrpex B2
1+foEX A(Xz)

3. Deﬁne A(yZ) — f(x,; yZ) T f(X',y) Iff(x' yZ) >
f(x,y) and A(y,) = 0 otherwise.

Y+, ey A2)y2

4. Takey' =
y 1+fy26yA(y2)

and T(x,y) = (x',y")



Duality Via Minimax Theorem

ldea: Instead of trying to enforce some of the
constraints, make the program into a two player
game where the new player can punish any
violated constraints.

Example: Maximize ¢’ x subject to
1. Ax<Db
2. x=0

Game: Take f(x,y) = cTx + yT'(b — Ax) where
we have the constraint that y = 0 (here y wants
to minimize f(x,y)).

If (Ax); > b;, y can take y; — oo to punish this.



Strong Duality Intuition

Canonical primal form: Maximize cx subject to
1. Ax<b
2. x=0

: T T
— Mmaxminc Xx b — Ax
ng( y=0 +y ( )

i Th T _ yT»
TRy b (e my A

Canonical dual form: Minimize b’y subject to

1. Aty >t

2. y=0

Not quite a proof, domains of x, y aren’t compact!



Slack Form Duality Intuition

Slack primal form: Maximize c'x subject to
1. Ax=b»b
2. x=0

= maxminc’x + yT (b — Ax)
x=0 'y

= minmaxy’b + (¢! —yTA)x
y x=20

Slack dual form: Minimize b’y subject to
1. Aty > (T
See problem set for a true proof of strong duality.



Max-flow/Min-cut Theorem

* Classical duality example: max-flow/min-cut

 Max-flow/min-cut theorem: The maximum flow
from s to t is equal to the minimum capacity
across a cut separating s and ¢.

* Duality is a bit subtle (see problem set)



Max-flow/Min-cut Example

* Maximum flow was 15, this is matched by the
minimal cut shown below:




Part Ill: Linear Programming as a
Problem Relaxation



Convex Relaxations

e Often we want to optimize over a nonconvex
set, which is very difficult.

* To obtain an approximation, we can take a
convex relaxation of our set.

* Linear programming can give such convex
relaxations.



Bad Example: 3-SAT solving

Actual problem: Want each x; € {0,1}.

A clause x; V x; Vi can be re-expressed as
xi +xj +x =1

Negations can be handled with the equality

—x; =1 —x;

Convex relaxation: Only require 0 < x; < 1

. 1
Too relaxed: Could just take all x; = EI

Note: strengthening this gives cutting planes



Example: Maximum Matching

Have a variable x;; for each edge (i, j) € E(G)
Actual problem: Maximize X,; i.; iyeg(c) Xij
subject to

1. Vi<j:(i,j) € E(G),x; € {0,1}

2. Vi, ZJ<l (DeE@G) Xji T ZJ>l (i,))EE(G) Xij =1
Convex relaxation: Only require 0 < x;; < 1

Gives exact value for bipartite graphs, not in
general (see problem set)



