
Lecture 2: Linear Programming 
and Duality



Lecture Outline

• Part I: Linear Programming and Examples

• Part II: Von Neumann’s Minimax Theorem and 
Linear Programming Duality

• Part III: Linear Programming as a Problem 
Relaxation



Part I: Linear Programming, 
Examples, and Canonical Form



Linear Programming

• Linear Programming: Want to optimize a linear 
function over linear equalities and inequalities.

• Example: Maximize f x, y, z = 3𝑥 + 4𝑦 + 5𝑧
when

1. 𝑥 + 𝑦 + 𝑧 = 1

2. 𝑥 ≥ 0

3. 𝑦 ≥ 0

4. 𝑧 ≥ 0

• Answer: 𝑥 = 𝑦 = 0, 𝑧 = 1, 𝑓 𝑥, 𝑦, 𝑧 = 5



Example: Directed Connectivity

• Directed connectivity: Is there a path from 𝑠 =
𝑥1 to 𝑡 = 𝑥𝑛 in a directed graph 𝐺?

• Linear program: Minimize 𝑥𝑛 subject to

1. 𝑥1 = 1

2. 𝑥𝑗 ≥ 𝑥𝑖 whenever x𝑖 → 𝑥𝑗 ∈ 𝐸(𝐺)

3. ∀𝑖, 𝑥𝑖 ≥ 0

• Answer is 1 if there is a path from 𝑠 to 𝑡 in 𝐺
and 0 otherwise.



Example: Maximum Flow

• Max flow: Given edge capacities 𝑐𝑖𝑗 for each 

edge 𝑥𝑖 → 𝑥𝑗 in 𝐺, what is the maximum flow 

from 𝑠 = 𝑥1 to 𝑡 = 𝑥𝑛?

• Example:
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Example Answer: 15

• Answer: 15. Actual flow is red/purple, capacity 
is blue/purple.
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Max Flow Equations

• Take 𝑥𝑖𝑗 = flow from 𝑖 to 𝑗

• Recall: 𝑐𝑖𝑗 is the capacity from 𝑖 to 𝑗

• Program: Maximize 𝑥𝑛1 subject to

1. ∀𝑖, 𝑗, 0 ≤ 𝑥𝑖𝑗 ≤ 𝑐𝑖𝑗 (no capacity is exceeded, no 

negative flow)

2. ∀𝑖, σ𝑗=1
𝑛 𝑥𝑗𝑖 = σ𝑗=1

𝑛 𝑥𝑖𝑗 (flow in = flow out)



In-class Exercise

• Shortest path problem: Given a directed graph 
𝐺 with lengths 𝑙𝑖𝑗 on the edges, what is the 

shortest path from 𝑠 = 𝑥1 to 𝑡 = 𝑥𝑛 in 𝐺?

• Exercise: Express the shortest path problem as 
a linear program.



In-class Exercise Answer

• Shortest path problem: How long is the shortest 
path from 𝑠 = 𝑥1 to 𝑡 = 𝑥𝑛 in a directed graph 
𝐺?

• Linear Program: Have variables 𝑑𝑖 representing 
the distance of vertex 𝑥𝑖 from vertex 𝑠 = 𝑥1. 
Maximize 𝑑𝑛 subject to 

1. 𝑑1 = 0

2. ∀𝑖, 𝑗, 𝑑𝑗 ≤ 𝑑𝑖 + 𝑙𝑖𝑗 where 𝑙𝑖𝑗 is the length of the 

edge from 𝑥𝑖 to 𝑥𝑗



Canonical Form

• Canonical form: Maximize cT𝑥 subject to

1. 𝐴𝑥 ≤ 𝑏

2. 𝑥 ≥ 0



Putting Things Into Canonical Form

• Canonical form: Maximize cT𝑥 subject to

1. 𝐴𝑥 ≤ 𝑏

2. 𝑥 ≥ 0

• To put a linear program into canonical form:

1. Replace each equality 𝑎𝑖
𝑇𝑥 = 𝑏𝑖 with two 

inequalities 𝑎𝑖
𝑇𝑥 ≤ 𝑏𝑖 and −𝑎𝑖

𝑇𝑥 ≤ −𝑏𝑖

2. In each expression, replace 𝑥𝑗 with (𝑥𝑗
+−𝑥𝑗

−)

where 𝑥𝑗
+, 𝑥𝑗

− are two new variables.



Slack Form

• Slack form: Maximize cT𝑥 subject to

1. 𝐴𝑥 = 𝑏

2. 𝑥 ≥ 0



Putting Things Into Slack Form

• Slack form: Maximize cT𝑥 subject to

1. 𝐴𝑥 = 𝑏

2. 𝑥 ≥ 0

• To put a linear program into slack form from 
canonical form, simply add a slack variable for 
each inequality.

σ𝑗=1
𝑛 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 ⬄ (σ𝑗=1

𝑛 𝑎𝑖𝑗𝑥𝑗) + 𝑠𝑖 = 𝑏𝑖 , 𝑠𝑖 ≥ 0



Part II: Von Neumann’s Minimax 
Theorem and Linear Programming 

Duality



Linear Programming Duality
• Primal: Maximize cT𝑥 subject to

1. 𝐴𝑥 ≤ 𝑏

2. 𝑥 ≥ 0

• Dual: Minimize 𝑏𝑇𝑦 subject to

1. 𝐴𝑇𝑦 ≥ 𝑐

2. 𝑦 ≥ 0

• Observation: For any feasible 𝑥, 𝑦, 𝑐𝑇𝑥 ≤ 𝑏𝑇𝑦
because 

𝑐𝑇𝑥 ≤ 𝑦𝑇𝐴𝑥 = 𝑦𝑇 𝐴𝑥 − 𝑏 + 𝑦𝑇𝑏 ≤ 𝑏𝑇𝑦

• Strong duality: 𝑐𝑇𝑥 = 𝑏𝑇𝑦 at optimal 𝑥, 𝑦



Heart of Duality

• Game: Have a function 𝑓: 𝑋 × 𝑌 → 𝑅.

• 𝑋 player wants to minimize 𝑓(𝑥, 𝑦), 𝑌 player 
wants to maximize 𝑓(𝑥, 𝑦)

• Obvious: Better to go second, i.e
max
𝑦∈𝑌

min
𝑥∈𝑋

𝑓(𝑥, 𝑦) ≤ min
𝑥∈𝑋

max
𝑦∈𝑌

𝑓(𝑥, 𝑦)

• Minimax theorems: Under certain conditions, 

max
𝑦∈𝑌

min
𝑥∈𝑋

𝑓(𝑥, 𝑦) = min
𝑥∈𝑋

max
𝑦∈𝑌

𝑓(𝑥, 𝑦) !



Von Neumann’s Minimax Theorem

• Von Neumann [1928]: If 𝑋 and 𝑌 are convex 
compact subsets of 𝑅𝑚 and 𝑅𝑛 and 𝑓: 𝑋 × 𝑌 →
𝑅 is a continuous function which is convex in 𝑋
and concave in 𝑌 then 

max
𝑦∈𝑌

min
𝑥∈𝑋

𝑓(𝑥, 𝑦) = min
𝑥∈𝑋

max
𝑦∈𝑌

𝑓(𝑥, 𝑦)

• These conditions are necessary (see problem 
set)



Example

• Let 𝑋 = 𝑌 = [−1,1] and consider the function 
𝑓 𝑥, 𝑦 = 𝑥𝑦. 

• If the 𝑥 player goes first and plays 𝑥 = .5, the 𝑦
player should play 𝑦 = 1, obtaining 𝑓 𝑥, 𝑦 =
.5

• If the 𝑥 player goes first and plays 𝑥 = −.5, the 
𝑦 player should play 𝑦 = −1, obtaining 
𝑓 𝑥, 𝑦 = .5

• The best play for the 𝑥 player is 𝑥 = 0 as then  
𝑓 𝑥, 𝑦 = 0 regardless of what 𝑦 is.



Connection to Nash Equilibria

• Recall: 𝑋 player wants to minimize 𝑓(𝑥, 𝑦), 𝑌
player wants to maximize 𝑓(𝑥, 𝑦).

• If (𝑥∗, 𝑦∗) is a Nash equilibrium then
𝑓 𝑥∗, 𝑦∗ ≤ max

𝑦∈𝑌
min
𝑥∈𝑋

𝑓 𝑥, 𝑦

≤ min
𝑥∈𝑋

max
𝑦∈𝑌

𝑓 𝑥, 𝑦 ≤ 𝑓(𝑥∗, 𝑦∗)

• Note: Since 𝑓 is convex in 𝑥 and concave in 𝑦, 
pure strategies are always optimal.

• However, this is circular: proof that Nash 
equilibria exist ≈ proof of minimax theorem



Minimax Theorem Proof Sketch

• Proof idea:

1. Define a function 𝑇: 𝑋 × 𝑌 → 𝑋 × 𝑌 so that 
𝑇 𝑥, 𝑦 = (𝑥, 𝑦) if and only if (𝑥, 𝑦) is a Nash 
equilibrium.

2. Use Brouwer’s fixed point theorem to argue that T 
must have a fixed point.



Attempt #1

• We could try to define 𝑇 as follows

1. Starting from (𝑥, 𝑦), take 𝑥′ to be the closest point 
to 𝑥 which minimizes 𝑓(𝑥′, 𝑦).

2. Now take 𝑦′ to be the closest point to 𝑦 which 
maximizes 𝑓(𝑥′, 𝑦′)

3. Take 𝑇 𝑥, 𝑦 = (𝑥′, 𝑦′)

• 𝑇 𝑥, 𝑦 = 𝑥, 𝑦 ⬄(𝑥, 𝑦) is a Nash equilibrium.



Brouwer’s Fixed Point Theorem

• Brouwer’s fixed point theorem: If 𝑋 is a convex, 
compact subset of 𝑅𝑛 then any continuous map 
𝑓: 𝑋 → 𝑋 has a fixed point

• Example: Any continuous function 𝑓: 𝐷2 → 𝐷2

has a fixed point.



Correct function T
• Problem: Previous 𝑇 may not be continuous!

• Correct 𝑇: Starting from 𝑥, 𝑦 :
1. Define Δ 𝑥2 = 𝑓 𝑥, 𝑦 − 𝑓 𝑥2, 𝑦 if 𝑓 𝑥2, 𝑦 <

𝑓(𝑥, 𝑦) and Δ 𝑥2 = 0 otherwise. 

2. Take 𝑥′ =
𝑥+׬𝑥2∈𝑋 Δ 𝑥2 𝑥2

𝑥2∈𝑋׬+1 Δ 𝑥2

3. Define Δ 𝑦2 = 𝑓 𝑥′, 𝑦2 − 𝑓 𝑥′, 𝑦 if 𝑓 𝑥, 𝑦2 >
𝑓(𝑥, 𝑦) and Δ 𝑦2 = 0 otherwise. 

4. Take 𝑦′ =
𝑦+׬𝑦2∈𝑌

Δ 𝑦2 𝑦2

𝑦2∈𝑌׬+1 Δ 𝑦2

and 𝑇 𝑥, 𝑦 = (𝑥′, 𝑦′)



Duality Via Minimax Theorem
• Idea: Instead of trying to enforce some of the 

constraints, make the program into a two player 
game where the new player can punish any 
violated constraints.

• Example: Maximize cT𝑥 subject to
1. 𝐴𝑥 ≤ 𝑏

2. 𝑥 ≥ 0

• Game: Take 𝑓 𝑥, 𝑦 = 𝑐𝑇𝑥 + 𝑦𝑇 𝑏 − 𝐴𝑥 where 
we have the constraint that  𝑦 ≥ 0 (here 𝑦 wants 
to minimize 𝑓(𝑥, 𝑦)).

• If 𝐴𝑥 𝑖 > 𝑏𝑖, 𝑦 can take 𝑦𝑖 → ∞ to punish this.



Strong Duality Intuition
• Canonical primal form: Maximize cT𝑥 subject to

1. 𝐴𝑥 ≤ 𝑏

2. 𝑥 ≥ 0

• = max
𝑥≥0

min
𝑦≥0

𝑐𝑇𝑥 + 𝑦𝑇 𝑏 − 𝐴𝑥

• = min
𝑦≥0

max
𝑥≥0

𝑦𝑇𝑏 + (𝑐𝑇 − 𝑦𝑇𝐴)𝑥

• Canonical dual form: Minimize 𝑏𝑇𝑦 subject to

1. 𝐴𝑇𝑦 ≥ 𝑐𝑇

2. 𝑦 ≥ 0

• Not quite a proof, domains of 𝑥, 𝑦 aren’t compact!



Slack Form Duality Intuition
• Slack primal form: Maximize cT𝑥 subject to

1. 𝐴𝑥 = 𝑏

2. 𝑥 ≥ 0

• = max
𝑥≥0

min
𝑦

𝑐𝑇𝑥 + 𝑦𝑇 𝑏 − 𝐴𝑥

• = min
𝑦

max
𝑥≥0

𝑦𝑇𝑏 + (𝑐𝑇 − 𝑦𝑇𝐴)𝑥

• Slack dual form: Minimize 𝑏𝑇𝑦 subject to

1. 𝐴𝑇𝑦 ≥ 𝑐𝑇

• See problem set for a true proof of strong duality.



Max-flow/Min-cut Theorem

• Classical duality example: max-flow/min-cut

• Max-flow/min-cut theorem: The maximum flow 
from 𝑠 to 𝑡 is equal to the minimum capacity 
across a cut separating 𝑠 and 𝑡.

• Duality is a bit subtle (see problem set)



Max-flow/Min-cut Example

• Maximum flow was 15, this is matched by the 
minimal cut shown below:
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Part III: Linear Programming as a 
Problem Relaxation



Convex Relaxations

• Often we want to optimize over a nonconvex 
set, which is very difficult.

• To obtain an approximation, we can take a 
convex relaxation of our set.

• Linear programming can give such convex
relaxations.



Bad Example: 3-SAT solving

• Actual problem: Want each 𝑥𝑖 ∈ {0,1}. 

• A clause 𝑥𝑖 ∨ 𝑥𝑗 ∨𝑘 can be re-expressed as 

𝑥𝑖 + 𝑥𝑗 + 𝑥𝑘 ≥ 1

• Negations can be handled with the equality 
¬𝑥𝑖 = 1 − 𝑥𝑖

• Convex relaxation: Only require 0 ≤ 𝑥𝑖 ≤ 1

• Too relaxed: Could just take all 𝑥𝑖 =
1

2
!

• Note: strengthening this gives cutting planes



Example: Maximum Matching

• Have a variable 𝑥𝑖𝑗 for each edge 𝑖, 𝑗 ∈ 𝐸(𝐺)

• Actual problem: Maximize σ𝑖,𝑗: 𝑖,𝑗 ∈𝐸(𝐺) 𝑥𝑖𝑗

subject to

1. ∀𝑖 < 𝑗: 𝑖, 𝑗 ∈ 𝐸 𝐺 , 𝑥𝑖𝑗 ∈ {0,1}

2. ∀𝑖, σ𝑗<𝑖: 𝑗,𝑖 ∈𝐸 𝐺 𝑥𝑗𝑖 + σ𝑗>𝑖: 𝑖,𝑗 ∈𝐸 𝐺 𝑥𝑖𝑗 ≤ 1

• Convex relaxation: Only require 0 ≤ 𝑥𝑖𝑗 ≤ 1

• Gives exact value for bipartite graphs, not in 
general (see problem set) 


