Lecture 2: Linear Programming and Duality

Lecture Outline

- Part I: Linear Programming and Examples
- Part II: Von Neumann's Minimax Theorem and Linear Programming Duality
- Part III: Linear Programming as a Problem Relaxation

Part I: Linear Programming, Examples, and Canonical Form

Linear Programming

- Linear Programming: Want to optimize a linear function over linear equalities and inequalities.
- Example: Maximize f(x, y, z) = 3x + 4y + 5z when
 - 1. x + y + z = 1
 - 2. $x \ge 0$
 - 3. $y \ge 0$
 - 4. $z \ge 0$
- Answer: x = y = 0, z = 1, f(x, y, z) = 5

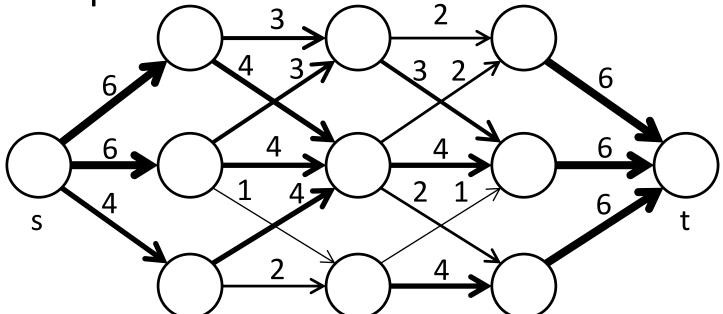
Example: Directed Connectivity

- Directed connectivity: Is there a path from $s = x_1$ to $t = x_n$ in a directed graph G?
- Linear program: Minimize x_n subject to
 - 1. $x_1 = 1$
 - 2. $x_j \ge x_i$ whenever $x_i \to x_j \in E(G)$
 - 3. $\forall i, x_i \geq 0$
- Answer is 1 if there is a path from s to t in G and 0 otherwise.

Example: Maximum Flow

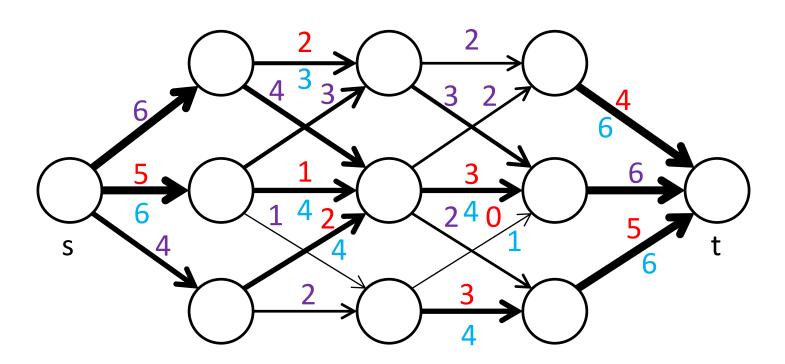
• Max flow: Given edge capacities c_{ij} for each edge $x_i \rightarrow x_j$ in G, what is the maximum flow from $s = x_1$ to $t = x_n$?

Example:



Example Answer: 15

• Answer: 15. Actual flow is red/purple, capacity is blue/purple.



Max Flow Equations

- Take $x_{ij} = \text{flow from } i \text{ to } j$
- Recall: c_{ij} is the capacity from i to j
- Program: Maximize x_{n1} subject to
 - 1. $\forall i, j, 0 \le x_{ij} \le c_{ij}$ (no capacity is exceeded, no negative flow)
 - 2. $\forall i, \sum_{j=1}^{n} x_{ji} = \sum_{j=1}^{n} x_{ij}$ (flow in = flow out)

In-class Exercise

- Shortest path problem: Given a directed graph G with lengths l_{ij} on the edges, what is the shortest path from $s=x_1$ to $t=x_n$ in G?
- Exercise: Express the shortest path problem as a linear program.

In-class Exercise Answer

- Shortest path problem: How long is the shortest path from $s=x_1$ to $t=x_n$ in a directed graph G?
- Linear Program: Have variables d_i representing the distance of vertex x_i from vertex $s=x_1$. Maximize d_n subject to
 - 1. $d_1 = 0$
 - 2. $\forall i, j, d_j \leq d_i + l_{ij}$ where l_{ij} is the length of the edge from x_i to x_j

Canonical Form

- Canonical form: Maximize c^Tx subject to
 - 1. $Ax \leq b$
 - $2. \quad x \ge 0$

Putting Things Into Canonical Form

- Canonical form: Maximize c^Tx subject to
 - 1. $Ax \leq b$
 - 2. $x \ge 0$
- To put a linear program into canonical form:
 - 1. Replace each equality $a_i^T x = b_i$ with two inequalities $a_i^T x \le b_i$ and $-a_i^T x \le -b_i$
 - 2. In each expression, replace x_j with $(x_j^+ x_j^-)$ where x_j^+, x_j^- are two new variables.

Slack Form

- Slack form: Maximize c^Tx subject to
 - 1. Ax = b
 - $2. \quad x \ge 0$

Putting Things Into Slack Form

- Slack form: Maximize c^Tx subject to
 - 1. Ax = b
 - 2. $x \ge 0$
- To put a linear program into slack form from canonical form, simply add a slack variable for each inequality.

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i \Leftrightarrow \left(\sum_{j=1}^{n} a_{ij} x_j\right) + s_i = b_i, s_i \ge 0$$

Part II: Von Neumann's Minimax Theorem and Linear Programming Duality

Linear Programming Duality

- Primal: Maximize $c^T x$ subject to
 - 1. $Ax \leq b$
 - 2. $x \ge 0$
- Dual: Minimize $b^T y$ subject to
 - 1. $A^T y \ge c$
 - 2. $y \ge 0$
- Observation: For any feasible $x, y, c^T x \le b^T y$ because

$$c^T x \le y^T A x = y^T (A x - b) + y^T b \le b^T y$$

• Strong duality: $c^T x = b^T y$ at optimal x, y

Heart of Duality

- Game: Have a function $f: X \times Y \to R$.
- X player wants to minimize f(x, y), Y player wants to maximize f(x, y)
- Obvious: Better to go second, i.e $\max_{y \in Y} \min_{x \in X} f(x, y) \leq \min_{x \in X} \max_{y \in Y} f(x, y)$
- Minimax theorems: Under certain conditions,

$$\max_{y \in Y} \min_{x \in X} f(x, y) = \min_{x \in X} \max_{y \in Y} f(x, y) !$$

Von Neumann's Minimax Theorem

• Von Neumann [1928]: If X and Y are convex compact subsets of R^m and R^n and $f: X \times Y \to R$ is a continuous function which is convex in X and concave in Y then

$$\max_{y \in Y} \min_{x \in X} f(x, y) = \min_{x \in X} \max_{y \in Y} f(x, y)$$

These conditions are necessary (see problem set)

Example

- Let X = Y = [-1,1] and consider the function f(x,y) = xy.
- If the x player goes first and plays x=.5, the y player should play y=1, obtaining f(x,y)=.5
- If the x player goes first and plays x = -.5, the y player should play y = -1, obtaining f(x,y) = .5
- The best play for the x player is x = 0 as then f(x,y) = 0 regardless of what y is.

Connection to Nash Equilibria

- Recall: X player wants to minimize f(x, y), Y player wants to maximize f(x, y).
- If (x^*, y^*) is a Nash equilibrium then $f(x^*, y^*) \le \max_{y \in Y} \min_{x \in X} f(x, y)$ $\le \min_{x \in X} \max_{y \in Y} f(x, y) \le f(x^*, y^*)$
- Note: Since f is convex in x and concave in y, pure strategies are always optimal.
- However, this is circular: proof that Nash equilibria exist ≈ proof of minimax theorem

Minimax Theorem Proof Sketch

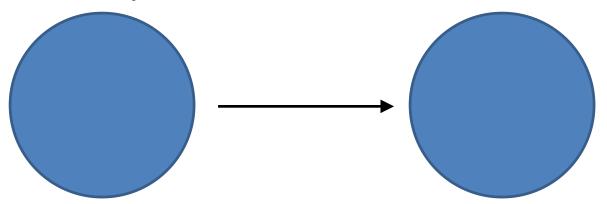
- Proof idea:
 - 1. Define a function $T: X \times Y \to X \times Y$ so that T(x,y) = (x,y) if and only if (x,y) is a Nash equilibrium.
 - 2. Use Brouwer's fixed point theorem to argue that T must have a fixed point.

Attempt #1

- We could try to define T as follows
 - 1. Starting from (x, y), take x' to be the closest point to x which minimizes f(x', y).
 - 2. Now take y' to be the closest point to y which maximizes f(x', y')
 - 3. Take T(x, y) = (x', y')
- $T(x,y) = (x,y) \Leftrightarrow (x,y)$ is a Nash equilibrium.

Brouwer's Fixed Point Theorem

- Brouwer's fixed point theorem: If X is a convex, compact subset of Rⁿ then any continuous map f: X → X has a fixed point
- Example: Any continuous function $f: D^2 \to D^2$ has a fixed point.



Correct function T

- Problem: Previous T may not be continuous!
- Correct T: Starting from (x, y):
 - 1. Define $\Delta(x_2) = f(x,y) f(x_2,y)$ if $f(x_2,y) < f(x,y)$ and $\Delta(x_2) = 0$ otherwise.
 - 2. Take $x' = \frac{x + \int_{x_2 \in X} \Delta(x_2) x_2}{1 + \int_{x_2 \in X} \Delta(x_2)}$
 - 3. Define $\Delta(y_2) = f(x', y_2) f(x', y)$ if $f(x, y_2) > f(x, y)$ and $\Delta(y_2) = 0$ otherwise.
 - 4. Take $y' = \frac{y + \int_{y_2 \in Y} \Delta(y_2) y_2}{1 + \int_{y_2 \in Y} \Delta(y_2)}$ and T(x, y) = (x', y')

Duality Via Minimax Theorem

- Idea: Instead of trying to enforce some of the constraints, make the program into a two player game where the new player can punish any violated constraints.
- Example: Maximize c^Tx subject to
 - 1. $Ax \leq b$
 - 2. $x \ge 0$
- Game: Take $f(x,y) = c^T x + y^T (b Ax)$ where we have the constraint that $y \ge 0$ (here y wants to minimize f(x,y)).
- If $(Ax)_i > b_i$, y can take $y_i \to \infty$ to punish this.

Strong Duality Intuition

- Canonical primal form: Maximize c^Tx subject to
 - 1. $Ax \leq b$
 - $2. \quad x \geq 0$
- $\bullet = \max_{x \ge 0} \min_{y \ge 0} c^T x + y^T (b Ax)$
- $\bullet = \min_{y \ge 0} \max_{x \ge 0} y^T b + (c^T y^T A) x$
- Canonical dual form: Minimize $b^T y$ subject to
 - 1. $A^T y \ge c^T$
 - 2. $y \ge 0$
- Not quite a proof, domains of x, y aren't compact!

Slack Form Duality Intuition

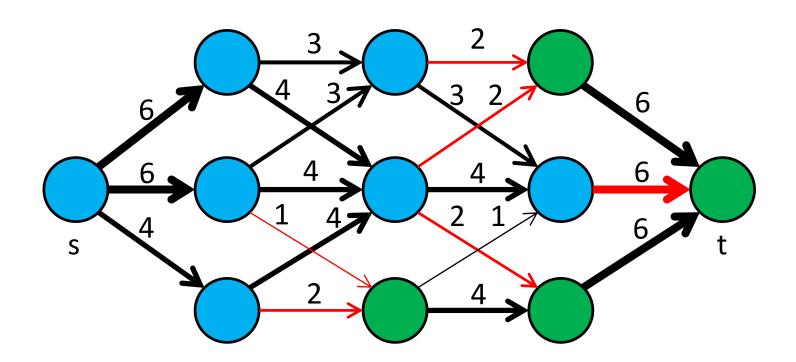
- Slack primal form: Maximize c^Tx subject to
 - 1. Ax = b
 - $2. \quad x \geq 0$
- = $\max_{x \ge 0} \min_{y} c^T x + y^T (b Ax)$
- = $\min_{y} \max_{x \ge 0} y^T b + (c^T y^T A)x$
- Slack dual form: Minimize $b^T y$ subject to
 - 1. $A^T y \ge c^T$
- See problem set for a true proof of strong duality.

Max-flow/Min-cut Theorem

- Classical duality example: max-flow/min-cut
- Max-flow/min-cut theorem: The maximum flow from s to t is equal to the minimum capacity across a cut separating s and t.
- Duality is a bit subtle (see problem set)

Max-flow/Min-cut Example

 Maximum flow was 15, this is matched by the minimal cut shown below:



Part III: Linear Programming as a Problem Relaxation

Convex Relaxations

- Often we want to optimize over a nonconvex set, which is very difficult.
- To obtain an approximation, we can take a convex relaxation of our set.
- Linear programming can give such convex relaxations.

Bad Example: 3-SAT solving

- Actual problem: Want each $x_i \in \{0,1\}$.
- A clause $x_i \vee x_j \vee_k$ can be re-expressed as $x_i + x_j + x_k \ge 1$
- Negations can be handled with the equality $\neg x_i = 1 x_i$
- Convex relaxation: Only require $0 \le x_i \le 1$
- Too relaxed: Could just take all $x_i = \frac{1}{2}!$
- Note: strengthening this gives cutting planes

Example: Maximum Matching

- Have a variable x_{ij} for each edge $(i,j) \in E(G)$
- Actual problem: Maximize $\sum_{i,j:(i,j)\in E(G)} x_{ij}$ subject to
 - 1. $\forall i < j: (i, j) \in E(G), x_{ij} \in \{0, 1\}$
 - 2. $\forall i, \sum_{j < i:(j,i) \in E(G)} x_{ji} + \sum_{j > i:(i,j) \in E(G)} x_{ij} \le 1$
- Convex relaxation: Only require $0 \le x_{ij} \le 1$
- Gives exact value for bipartite graphs, not in general (see problem set)