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Part I: Introduction/Motivation



Goal of Complexity Theory

• Fundamental goal of complexity theory: 
Determine the computational resources 
(such as time and space) needed to solve 
problems

• Requires upper bounds and lower bounds



Upper Bounds

• Requires finding a good algorithm and 
analyzing its performance.

• Traditionally requires great ingenuity 
(but stay tuned!)



is impossible!

Lower Bounds

• Requires proving impossibility 

• Notoriously hard to prove lower bounds on all 
algorithms (e.g. P versus NP)

• If we can’t yet prove lower bounds on all 
algorithms, what can we do?



is impossible!

Lower Bounds: What we can do

Both paths give a deep understanding and warn us 
what not to try when designing algorithms.

Path #1
Conditional Lower Bounds: 
Assume one lower bound, 
see what follows (e.g. NP-

hardness)

Path #2
Restricted Models: Prove 

lower bounds on restricted 
classes of algorithms



This seminar

• This seminar: Analyzing the Sum of Squares 
(SOS) Hierarchy (a restricted but powerful 
model)



Why Sum of Squares (SOS)?

• Broadly Applicable: Meta-algorithm (framework for 
designing algorithms) which can be applied to a 
wide variety of problems.

• Effective: Surprisingly powerful. Captures several 
well-known algorithms (max-cut [GW95], sparsest 
cut [ARV09], unique games [ABS10]) and is 
conjectured to be optimal for many combinatorial 
optimization problems!

• Simple: Essentially only uses the fact that squares 
are non-negative over the real numbers.



SOS for Optimists and Pessimists

• Upper bound side: SOS gives algorithms for a 
wide class of problems which may well be 
optimal.

• Lower bound side: SOS lower bounds give 
strong evidence of hardness



Part II: Planted Clique



SOS on planted clique

• As we’ll see later in the course, SOS is not 
particularly effective on planted clique

• That said, it is an illustrative example for 
what SOS is.

• Also how I got interested in SOS.



Max Clique Problem

• Max clique: Given an input graph 𝐺, what is 
the size of the largest clique (set of vertices 
which are all adjacent to each other)?

• NP-hard, was in Karp’s original list of NP-hard 
problems.

• This is worst case, how about average case?



Max Clique on Random Graphs

• If 𝐺 is a random graph, w.h.p. (with high 
probability) the maximum size of a clique in 
𝐺 is 2 ± 𝑜 1 log2 𝑛

• Idea: expected number of cliques of size 𝑘 is 

2
− 𝑘

2 𝑛
𝑘

• Solving for the 𝑘 which makes this 1, we 
obtain that 𝑘 ≈ 2 log2 𝑛.

• Open problem [Kar76]: Can we find a clique 
of size 1 + 𝜖 log2 𝑛 in polynomial time?



Planted Clique

• Introduced by Jerrum [Jer92] and Kucera [Kuc95]

• Instead of looking for the largest clique in a 
random graph 𝐺, what happens if we plant a 
clique of size 𝑘 ≫ 2 log2 𝑛 in 𝐺 by taking k 
vertices in 𝑉(𝐺) and making them all adjacent to 
each other?

• Can we find such a planted k-clique? Can we tell if 
a k-clique has been planted?

• Proof complexity analogue: Can we prove that a 
random graph has no clique of size k?

• Best known algorithm: 𝑘 = Ω( 𝑛) [AKS98]



Planted Clique Example
• Random instance: 𝐺 𝑛,

1

2

• Planted instance: 𝐺 𝑛,
1

2
+ 𝐾𝑘

• Example: Which graph has a planted 5-clique?
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Part III:
A Game for Sum of Squares (SOS)



Distinguishing via Equations

• Recall: Want to distinguish between a random 
graph and a graph with a planted clique.

• Possible method: Write equations for k-clique 
(k=planted clique size), use a feasibility test to 
determine if these equations are solvable.

• SOS gives a feasibility test for equations.



• Variable 𝑥𝑖 for each vertex i in G. 

• Want 𝑥𝑖 = 1 if i is in the clique. 

• Want 𝑥𝑖 = 0 if i is not in the clique.

• Equations:

𝑥𝑖
2 = 𝑥𝑖 for all i.

𝑥𝑖 𝑥𝑗 = 0 if 𝑖, 𝑗 ∉ 𝐸(𝐺)

σ𝑖 𝑥𝑖 = 𝑘

These equations are feasible precisely when G 
contains a 𝑘-clique.

Equations for 𝑘-Clique



• SOS hierarchy: feasibility test for equations, 
expressible with the following game.

• Two players, Optimist and Pessimist

• Optimist: Says answer is YES, gives some 
evidence

• Pessimist: Tries to refute Optimist’s evidence

• SOS hierarchy computes who wins this game 
(with optimal play)

A Game for the Sum of Squares 
Hierarchy



What evidence should we ask for?

Choice #1: Optimist must give the values for 
all variables.

Optimist Pessimist

How do I find 
what the 

variables are?

Checking this 
is easy!



What evidence should we ask for?

Choice #2: No evidence at all.

Optimist Pessimist

How do I 
show this is 
unsolvable?

Yeah, that’s 
solvable!



• We want something in the middle.

• Optimist’s evidence for degree d SOS hierarchy: 
expectation values of all monomials up to 
degree d over some distribution of solutions.

What evidence should we ask for?



Example: Does 𝐾4 Have a Triangle?

Recall equations:
Want 𝑥𝑖 = 1 if 𝑖 ∈ triangle, 0 
otherwise.

∀𝑖, 𝑥𝑖
2 = 𝑥𝑖

σ𝑖 𝑥𝑖 = 3

𝑥1

G

𝑥2

𝑥3𝑥4



One option: Optimist can take the trivial 
distribution with the single solution 
𝑥1 = 𝑥2 = 𝑥3 = 1, 𝑥4 = 0
and give the corresponding values
of all monomials up to degree d.
Values for 𝑑 = 2:
E[1] = 1
E[𝑥1] = E[𝑥2] = E[𝑥3] = 1
E[𝑥1

2] = E[𝑥2
2] = E[𝑥3

2] = 1
E[𝑥1𝑥2] = E[𝑥1𝑥3] = E[𝑥2𝑥3] = 1
E[𝑥4

2] = E[𝑥4] = 0 
E[𝑥1𝑥4] = E[𝑥2𝑥4] = E[𝑥3𝑥4] = 0.

Example: Does 𝐾4 Have a Triangle?

𝑥1

G

𝑥2

𝑥3𝑥4



Another option: Optimist can take each of the 4 
triangles in G with probability ¼
(uniform distribution on solutions)
Values for 𝑑 = 2:
E[1] = 1

∀𝑖, E[𝑥𝑖
2] = E[𝑥𝑖] = 

3

4

∀𝑖 ≠ 𝑗, E[𝑥𝑖𝑥𝑗] = 
1

2

Example: Does 𝐾4 Have a Triangle?

𝑥1

G

𝑥2

𝑥3𝑥4



Example: Does 𝐶4 Have a Triangle?

Recall equations:
Want 𝑥𝑖 = 1 if 𝑖 ∈ triangle, 0 
otherwise.

∀𝑖, 𝑥𝑖
2 = 𝑥𝑖

σ𝑖 𝑥𝑖 = 3
𝑥1𝑥3 = 𝑥2𝑥4 = 0
Here there is no solution, so 
Optimist has to bluff

𝑥1

G

𝑥2

𝑥3𝑥4



Optimist Bluffs

Optimist could give the following pseudo-
expectation values as “evidence”:
෨𝐸 1 = 1

∀𝑖, ෨𝐸 𝑥𝑖
2 = ෨𝐸 𝑥𝑖 =

3

4

෨𝐸 𝑥1𝑥2 = ෨𝐸 𝑥2𝑥3 = ෨𝐸 𝑥3𝑥4 = ෨𝐸 𝑥1𝑥4 =
3

4
෨𝐸 𝑥1𝑥3 = ෨𝐸 𝑥2𝑥4 = 0

𝑥1

G

𝑥2

𝑥3𝑥4



Detecting Lies
How can Pessimist detect lies systematically?
Method 1: Check equations!
Let’s check some: (all vertices and edges have 
pseudo-expectation value 3/4)
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 3

Ẽ[𝑥1] + Ẽ[𝑥2] + Ẽ[𝑥3] + Ẽ[𝑥4] = 4 ⋅
3

4
= 3

𝑥1
2 + 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥1𝑥4 = 3𝑥1

Ẽ[𝑥1
2] +Ẽ[𝑥1 𝑥2] + Ẽ[𝑥1𝑥3] + Ẽ[𝑥1𝑥4]

= 3/4 + 3/4 + 0 + 3/4 = 9/4 = 3Ẽ[𝑥1]

Equations are satisfied,
need something more…

𝑥1

G

𝑥2

𝑥3𝑥4



Detecting Lies
How else can Pessimist detect lies?
Method 2: Check non-negativity of squares!
Ẽ[(𝑥1+ 𝑥3 − 𝑥2 − 𝑥4) 2] =
Ẽ[𝑥1

2] + Ẽ[𝑥3
2] + Ẽ[𝑥2

2] + Ẽ[𝑥4
2] 

+ 2Ẽ[𝑥1𝑥3] − 2Ẽ[𝑥1𝑥2] − 2Ẽ[𝑥1𝑥4] 
− 2Ẽ[𝑥3𝑥2] − 2Ẽ[𝑥3𝑥4] + 2Ẽ[𝑥2𝑥4] 
= 3/4 + 3/4 + 3/4  + 3/4 + 0 
− 3/2 − 3/2 − 3/2 − 3/2 + 0 = -3

Nonsense!

𝑥1

G

𝑥2

𝑥3𝑥4



• We restrict Pessimist to these two methods.

• Optimist wins if he can come up with pseudo-
expectation values Ẽ (up to degree d) which 
obey all of the required equations and have 
non-negative value on all squares.

• Otherwise, Pessimist wins.

• Degree d SOS hierarchy says YES if Optimist 
wins and NO if Pessimist wins, this gives a 
feasibility test.

Degree d SoS Hierarchy



Feasibility Testing with SOS

Infeasible, 
test says NO

Infeasible, 
test says YES

Feasible, 
test says YES

NO YES

Test says NO Test says YES

What we want:

NO YES

Pessimist wins Optimist wins

Degree d SoS Hierarchy: NO



SOS Hierarchy

𝑑 = 2

𝑑 = 4

𝑑 = 6

𝑑 = 8
…

• Optimist must give more values
• Harder for Optimist to bluff 
• Easier for Pessimist to refute 

Optimist and win
• SOS takes longer to compute winner

Increasing d



Part IV:
SOS on general equations



General Setup

• Want to know if polynomial equations

𝑠1 𝑥1, … , 𝑥𝑛 = 0, 𝑠2 𝑥1, … , 𝑥𝑛 = 0, …

can be solved simultaneously over ℝ.

• Actually quite general, most problems can be 
formulated in terms of polynomial equations



Optimist’s strategy: Pseudo-
expectation values

• Recall: trying to solve equations 
𝑠1 𝑥1, … , 𝑥𝑛 = 0, 𝑠2 𝑥1, … , 𝑥𝑛 = 0, …

• Pseudo-expectation values are a linear 
mapping ෨𝐸 from polynomials of degree ≤ 𝑑 to  
ℝ satisfying the following conditions (which 
would be satisfied by any real expectation
over a distribution of solutions):

1. Ẽ 1 = 1

2. Ẽ 𝑓𝑠𝑖 = 0 whenever deg 𝑓 + deg 𝑠𝑖 ≤ 𝑑

3. Ẽ 𝑔2 ≥ 0 whenever deg 𝑔 ≤
𝑑

2



Pessimist’s Strategy: 
Positivstellensatz/SoS Proofs

• Can 𝑠1 𝑥1, … , 𝑥𝑛 = 0, 𝑠2 𝑥1, … , 𝑥𝑛 = 0, …

be solved simultaneously over ℝ?

• There is a degree 𝑑 Positivstellensatz/SoS
proof of infeasibility if ∃ polynomials 𝑓𝑖 , 𝑔𝑗
such that

1. −1 = σ𝑖 𝑓𝑖𝑠𝑖 + σ𝑗 𝑔𝑗
2

2. ∀𝑖, deg 𝑓𝑖 + deg 𝑠𝑖 ≤ 𝑑

3. ∀𝑗, deg 𝑔𝑗 ≤
𝑑

2



Duality
• Degree 𝑑 Positivstellensatz proof: 

−1 = σ𝑖 𝑓𝑖𝑠𝑖 + σ𝑗 𝑔𝑗
2

• Pseudo-expectation values: 

Ẽ 1 = 1

Ẽ 𝑓𝑖𝑠𝑖 = 0

Ẽ 𝑔𝑗
2 ≥ 0

Cannot both exist, otherwise

−1 = Ẽ −1 = σ𝑖 Ẽ[𝑓𝑖𝑠𝑖] + σ𝑗 Ẽ[𝑔𝑗
2] ≥ 0

• Almost always, one or the other will exist.

• SoS hierarchy determines which one exists.



Summary: Feasibility Testing with SoS

Infeasible, 
test says NO

Infeasible, 
test says YES

Feasible, 
test says YES

NO YES

∃ degree d SoS proof 
of infeasibility

Degree d SoS: NO

• Degree 𝑑 SoS hierarchy: Returns YES if there 
are degree 𝑑 pseudo-expectation values, 
returns NO if there is a degree 𝑑
Positivstellensatz/SoS proof of infeasibility, 

• Duality: Cannot both exist, one or the other 
almost always exists.

∃ degree d pseudo-
expectation values



• Which sets of infeasible equations can SOS 
refute at a given degree 𝑑?

• For a given set of infeasible equations, how 
high does the degree 𝑑 need to be before SOS 
can refute it?

Fundamental Research Questions



Optimization with SoS

• How can we use SoS for optimization and 
approximation algorithms?

• Equations often have parameter(s) we are 
trying to optimize 

• Example:
• ∀𝑖, 𝑥𝑖

2 = 𝑥𝑖
• 𝑥𝑖 𝑥𝑗 = 0 if 𝑖, 𝑗 ∉ 𝐸 𝐺

• σ𝑖 𝑥𝑖 = 𝑘

• Can use SoS to estimate the optimal value of 𝑘



Optimization with SoS
• Want to optimize parameters (such as k) over green 

region, SOS optimizes over the blue and green regions.

• As we increase the degree 𝑑, the blue region shrinks

Deg d Positivstellensatz proof of infeasibility

Infeasible but no proof

Equations are feasible



Approximation Algorithms with SoS
• If there is a method for rounding the pseudo-

expectation values Ẽ into an actual solution 
(with worse parameters), this gives an 
approximation algorithm. 

Infeasible but no proof

Equations are feasible

A Solution

Optimal Solution

Ẽ

Deg d Positivstellensatz proof of infeasibility



Lower Bound Strategy for SoS

1. Construct pseudo-expectation values Ẽ

2. Show that Ẽ obeys the required equalities 
and is non-negative on squares. 

NO YES

∃ degree d SOS proof 
of infeasibility

Degree d SoS: NO

∃ degree d pseudo-
expectation values

Construct ෨𝐸



Part V: Overview of SOS results 
and Seminar Plan



Mathematical Questions on SOS
• Hilbert’s 17th problem: Can every non-negative 

polynomial be written as a sum of squares of 
rational functions?

• Resolved affirmitavely by Emil Artin [Art27] in 
1927

• Closely related to completeness of the 
Positivstellensatz proof system (Stengle’s
Positivstellensatz [Kri64],[Ste74] gives full proof).

• Note: Hilbert [Hil1888] had already showed that 
not every non-negative polynomial can be 
written as a sum of squares. Motzkin [Mot67] 
gave the first explicit example.



Mathematical Questions on SOS

• Lots of further research on non-negative 
polynomials and sums of squares. Two 
examples:

• Blekherman [Ble06] showed that there are 
significantly more non-negative polynomials 
than polynomials which are sums of squares of 
polynomials. 

• Open problem: How many squares of rational 
functions are required to obtain a given non-
negative polynomial? Best known bound: 2𝑛

by Pfister [Pfi67]



SOS hierarchy in Computer Science

• SOS hierarchy was investigated independently 
by Grigoriev [Gri01a,Gri01b], Lasserre [Las01], 
Nesterov [Nes00], Parrilo [Par00], and Shor 
[Sho87]

• SOS was first used in practice for control 
theory, where the number of variables is small 
and we can afford a relatively high degree.

• Theoretically, SOS has been investigated for 
both algorithms and lower bounds.



Algorithms Captured By SOS

• Several algorithms were discovered by other 
means then shown to be captured by SOS. 
Examples are:

1. Goemans-Williamson for MAX CUT [GW95]

2. The Arora-Rao-Vazirani analysis for sparsest cut 
[ARV09]

3. The sub-exponential time algorithm for unique 
games [ABS10]



Further Algorithms

• More recently, SOS has given algorithms for 
several problems directly. Examples are:

1. Planted Sparse Vector [BKS14] and dictionary 
learning [BKS15]

2. Tensor Decomposition [GM15], [BKS15], 
[MSS16], [HSSS16] and Tensor Completion 
[BM16], [PS17].

3. Subexponential time algorithm for quantum 
separability [BKS17].



SOS Lower Bounds

• Grigoriev [Gri01a], [Gri01b] proved SOS lower 
bounds for random 3-XOR and knapsack. The 
3-XOR lower bound was later independently 
rediscovered by Schoenebeck [Sch08]

• Tulsiani [Tul09] adapted gadget reductions to 
SOS to prove SOS lower bounds on many NP-
hard problems

• Recently, a series of works [MPW15], [DM15], 
[HKPRS16], [BHKKMP16] proved SOS lower 
bounds on planted clique



Further SOS Lower Bounds

• Now have SOS bounds for general CSPs 
[BCK15], [KMDW17]

• Planted clique lower bound has been 
generalized to other planted problems 
including tensor PCA [HKPRSS17]

• Actually, we don’t know that much more for 
lower bounds, we’re in need of another 
breakthrough…



SOS and Unique Games
• The unique games conjecture [Kho02], which 

says that the unique games problem is NP-hard,
is an extremely important conjecture in 
complexity theory and inapproximability theory.

• SOS is a leading candidate for refuting the 
unique games conjecture 

• Difficulty in proving lower bounds: many 
potential hard examples are broken by SOS 
because SOS captures our bounds on their 
value [BBH+12]!

• Summary: We conjecture unique games is hard 
but can’t prove that constant degree SOS fails.



Other SOS topics

• SOS and symmetry: Can symmetry be used to 
simplify the sum of squares program and its 
analysis? Answer: Yes [GP04], [RSST16]

• Extension complexity: SOS only looks at degree, 
can we bound the size of any semidefinite 
program solving a problem? Answer: Yes, at 
least for some problems [LRS15]



What we’ll cover

SOS

Mathematical questions 
on non-negative 

polynomials and SOS

SOS Lower Bounds
• Knapsack
• 3-XOR
• NP-hard problems
• Planted Clique

Further lower bounds
• General CSPs
• More general planted 

problems

SOS Algorithms
• MAX CUT
• Sparsest Cut
• Planted sparse vector
• Tensor decomposition 

and completion
• Unique Games

Further algorithms
• Quantum separability
• Dictionary learning

Other Topics
• Symmetry and SOS
• Extension Complexity
• Counterexamples 

broken by SOS

Control theory 
and other 

applications

Covered
Hope you’ll present 

much of this
Can present on this 

if you’d like to

Other



Seminar Plan

• Part I: Background 

• Part II: Upper Bounds for SOS

• Part III: Lower Bounds for SOS 

• Part IV: Further SOS upper bounds 
(including unique games)

• Part V: Presentations

• See schedule for more information.
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