Lecture 4: Goemans-Williamson
Algorithm for MAX-CUT



Lecture Outline

Part I: Analyzing semidefinite programs
Part |I: Analyzing Goemans-Williamson
Part lll: Tight examples for Goemans-Williamson

Part IV: Impressiveness of Goemans-Williamson
and open problems



Part I: Analyzing semidefinite
programs



Goemans-Williamson Program

* Recall Goemans-Williamson program: Maximize

1-M;
Qi jri<j(L)EEG) 5 — subject to M 3> 0 where

M = 0 and Vi,Mii =1

* Theorem: Goemans-Williamson gives a .878
approximation for MAX-CUT

* How do we analyze Goemans-Williamson and
other semidefinite programs?



Vector Solutions

* Want: matrix M such that M;; = x;x; where
{x;} are the problem variables.

* Semidefinite program: Assigns a vector v; to
each x;, gives the matrix M where M;; = v; - v;

* Note: This is a relaxation of the problem. To
obtain an actual solution, we need a rounding
algorithm to round this vector solution into an
actual solution.



Vector Solution Justification

* Theorem: M = 0O if and only if there are vectors
{Ul'} such that Ml] = Vi Vj

!
e Example: M = |-1
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vl — (110;())
’ UZ — <_1;1;O>
v3 — <1)0;1>

* One way to see this: take a “square root” of M

* Second way to see this: Cholesky decomposition



Square Root of a PSD Matrix

* If there are vectors {v;} such that M;; = v; - v;,
take V to be the matrix with rows v4, -+, v,,.
M=VvVl:>0

» Conversely, if M = 0then M = Y . Lu;u]
where A; = 0 for all i. Taking V to be the matrix
with columns \/A;u;, VVT = M. Taking v; to be
the ith row of VV, M;; = v; - v;



Cholesky Decomposition

e Cholesky decomposition: M = CCT where C is
a lower triangular matrix.

o v; =).,Ci e, is theith row of C
 We can find the entries of C one by one.



Cholesky Decomposition Example

1 -1 1
e Examplee M =|-1 2 -1
1 -1 2.
¢ v, =(1,0,0)
* Need(Cy,qy = —1sothatv, vy =—-1.v, =
<_11 622,0>

* Taklng sz — 1, Vy - Vy = 2. Uy = <_1,1,0>

* Need (31 = 1and (35, = 0sothatvy - v =
1, V3 - Vy = —1. V3 = (1,0, C33>.

* Taklng C33 — 1, V3 - V3 = 1. V3 = (1,0,1)



Cholesky Decomposition Example
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Cholesky Decomposition Formulas

. Mix—YhY CraCi
Vi < k, take Cp,; = —= Zac‘l ka-la
i

Take C; = 0if My, — Y4 % CoyCig = C;; = O
Note that vy - v; = Y425 Cra Cig + CriCiy = My

Vk, take Cyy = \/Mkk — YkZ1Ch,

These formulas are the basis for the Cholesky-
Banachiewicz algorithm and the Cholesky-Crout
algorithm (these algorithms only differ in the
order the entries are evaluated)



Cholesky Decomposition Failure

1. Vi<k Cpy= M"k_zafl. haCla
i
N =t

* |f the Cholesky decomposition succeeds, it gives
us vectors {v;} such that M;; = v; - v;

 The formulas can fail in two ways:

1. My, —Xk-1cz < 0forsomek

2. C; =0and My, — YL CpyCiq # O for some i, k
* Failure implies M is not PSD (see problem set)



Part Il: Analyzing Goemans-
Williamson



Vectors for Goemans-Williamson

e Goemans-Williamson: Maximize
1-M;;

Zi,j;i<j,(i,j)eg(6) subjectto M = 0 where
M>0andVi,M;; =1

* Semidefinite program gives us vectors {v; }
where v; - v; = M;;




Rounding Vectors

* Beautiful idea: Map each vector v; to 1 by
taking a random vector w and setting x; = 1 if
w-v; > 0andsettingx; = —-1ifw-v; <0

* Example:




Expected Cut Value

. 1-Xx;x;
. ConSIderE[Zi,j:i<j,(i,j)€E(G) 2 ]]

* Foreachi,jsuchthati <j,i,j € E(G),
1-=Xix ©) _
E[ > ] = ;where O € [0, ] is the angle

between v; and v;

1-M;j  1-cos®
2

e On the other hand



Approximation Factor

* Goemens-Williamson gives a cut with expected
value at least

O
min =y 2.i,j:i< (L ))EEG) 5

2

* The firsttermis = .878 at O,,;; = 134°
1-E;; .
21 jri<j (i, ))EE(G) — Lis an upper bound on the

max cut size, so we have a .878 approximation.



Part IlI: Tight Examples



Showing Tightness

* How can we show this analysis is tight?

 We give two examples where we obtain a cut of
1— EU
value = .878 Zl] i<j,(i,))EE(G)

1-E;;
* Inone example, Y3; i.; i i hep(e)—— IS the

value of the maximum cut. In the other

1-E;
example, .878 ZU i<j,(i, EEG) ™ 5 —
of the maximum cut.

is the value



Example 1: Hypercube

Have one vertex for each point x; € {+1}"
We have an edge between x; and x; in G if

—1 (XiXj
‘cos ( ) Orn

n
for an arbitrarily small 6 > 0

<0

1—cos(Ocrit)

Goemans-Williamson value = E(G)
This is achieved by the coordinate cuts.

Goemans-Williamson rounds to a random cut

which gives value = Gj:it E(G)




Example 2: Sphere

* Take a large number of random points {x;} on
the unit sphere

* We have an edge between x; and x; in G if
[cos™(x; - %) — Oppie| < 6

for an arbitrarily small 6 > 0

I 1—cos(Oyi
* Goemans-Williamson value = 2( C”t)E(G)

* Arandom hyperplane cut gives value =

QZ’“ E(G) and this is essentially optimal.




Proof requirements

How can we prove the above examples behave
as claimed?

For the hypercube, have to upper bound the
value of the Goemans-Williamson program.

This can be done by determining the
eigenvalues of the hypercube graph and using
this to analyze the dual (see problem set)

~or the sphere, have to prove that no cut does
oetter than a random hyperplane cut (this is
nard, see Feige-Schechtman [FS02])




Part IV: Impressiveness of Goemans-
Williamson and Open Problems



Failure of Linear Programming

* Trivial algorithm: Randomly guess which side of
the cut each vertex is on.

. L 1
* Gives approximation factor .

* Linear programming doesn’t do any better, not

even polynomial sized linear programming
extensions [CLRS13]!



Hardness of beating GW

* Only know NP-hardness for a 1—: approximation

[Has01], [TSSWOO]

* Unique-Games hard to beat Goemans-
Williamson on MAX-CUT [KKMOOQ7]



Open problems

* Can we find a subexponential time algorithm
beating Goemans-Williamson on max cut?

* Can we prove constant degree SOS lower
bounds for obtaining a better approximation
than Goemans-Williamson?
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