Lecture 4: Goemans-Williamson Algorithm for MAX-CUT

Lecture Outline

- Part I: Analyzing semidefinite programs
- Part II: Analyzing Goemans-Williamson
- Part III: Tight examples for Goemans-Williamson
- Part IV: Impressiveness of Goemans-Williamson and open problems

Part I: Analyzing semidefinite programs

Goemans-Williamson Program

- Recall Goemans-Williamson program: Maximize $\sum_{i,j:i < j,(i,j) \in E(G)} \frac{1-M_{ij}}{2}$ subject to $M \ge 0$ where $M \ge 0$ and $\forall i, M_{ii} = 1$
- Theorem: Goemans-Williamson gives a .878 approximation for MAX-CUT
- How do we analyze Goemans-Williamson and other semidefinite programs?

Vector Solutions

- Want: matrix M such that $M_{ij} = x_i x_j$ where $\{x_i\}$ are the problem variables.
- Semidefinite program: Assigns a vector v_i to each x_i , gives the matrix M where $M_{ij} = v_i \cdot v_j$
- Note: This is a relaxation of the problem. To obtain an actual solution, we need a rounding algorithm to round this vector solution into an actual solution.

Vector Solution Justification

• Theorem: $M \geqslant 0$ if and only if there are vectors $\{v_i\}$ such that $M_{ij} = v_i \cdot v_j$

• Example:
$$M = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}, v_1 = \langle 1,0,0 \rangle$$

 $v_2 = \langle -1,1,0 \rangle$
 $v_3 = \langle 1,0,1 \rangle$

- One way to see this: take a "square root" of M
- Second way to see this: Cholesky decomposition

Square Root of a PSD Matrix

- If there are vectors $\{v_i\}$ such that $M_{ij} = v_i \cdot v_j$, take V to be the matrix with rows v_1, \dots, v_n . $M = VV^T \ge 0$
- Conversely, if $M \geqslant 0$ then $M = \sum_{i=1}^n \lambda_i u_i u_i^T$ where $\lambda_i \geq 0$ for all i. Taking V to be the matrix with columns $\sqrt{\lambda_i} u_i$, $VV^T = M$. Taking v_i to be the ith row of V, $M_{ij} = v_i \cdot v_j$

Cholesky Decomposition

- Cholesky decomposition: $M = CC^T$ where C is a lower triangular matrix.
- $v_i = \sum_a C_{ia} e_a$ is the ith row of C
- We can find the entries of C one by one.

Cholesky Decomposition Example

• Example:
$$M = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

- $v_1 = \langle 1,0,0 \rangle$
- Need $C_{21} = -1$ so that $v_2 \cdot v_1 = -1$. $v_2 = \langle -1, C_{22}, 0 \rangle$
- Taking $C_{22} = 1$, $v_2 \cdot v_2 = 2$. $v_2 = \langle -1, 1, 0 \rangle$
- Need $C_{31}=1$ and $C_{32}=0$ so that $v_3\cdot v_1=1, v_3\cdot v_2=-1, v_3=\langle 1,0,C_{33}\rangle.$
- Taking $C_{33} = 1$, $v_3 \cdot v_3 = 1$. $v_3 = \langle 1, 0, 1 \rangle$

Cholesky Decomposition Example

•
$$v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$, $v_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$

Cholesky Decomposition Formulas

•
$$\forall i < k$$
, take $C_{ki} = \frac{M_{ik} - \sum_{a=1}^{i-1} C_{ka} C_{ia}}{c_{ii}}$

- Take $C_{ki} = 0$ if $M_{ik} \sum_{a=1}^{i-1} C_{ka} C_{ia} = C_{ii} = 0$
- Note that $v_k \cdot v_i = \sum_{a=1}^{i-1} C_{ka} C_{ia} + C_{ki} C_{ii} = M_{ik}$
- $\forall k$, take $C_{kk} = \sqrt{M_{kk} \sum_{a=1}^{k-1} C_{ka}^2}$
- These formulas are the basis for the Cholesky-Banachiewicz algorithm and the Cholesky-Crout algorithm (these algorithms only differ in the order the entries are evaluated)

Cholesky Decomposition Failure

1.
$$\forall i < k, C_{ki} = \frac{M_{ik} - \sum_{a=1}^{i-1} C_{ka} C_{ia}}{C_{ii}}$$

2.
$$\forall k, C_{kk} = \sqrt{M_{kk} - \sum_{a=1}^{k-1} C_{ka}^2}$$

- If the Cholesky decomposition succeeds, it gives us vectors $\{v_i\}$ such that $M_{ij}=v_i\cdot v_j$
- The formulas can fail in two ways:
 - 1. $M_{kk} \sum_{a=1}^{k-1} C_{ka}^2 < 0$ for some k
 - 2. $C_{ii}=0$ and $M_{ik}-\sum_{a=1}^{i-1}C_{ka}C_{ia}\neq 0$ for some i,k
- Failure implies M is not PSD (see problem set)

Part II: Analyzing Goemans-Williamson

Vectors for Goemans-Williamson

- Goemans-Williamson: Maximize $\sum_{i,j:i < j, (i,j) \in E(G)} \frac{1-M_{ij}}{2} \text{ subject to } M \geqslant 0 \text{ where } M \geqslant 0 \text{ and } \forall i, M_{ii} = 1$
- Semidefinite program gives us vectors $\{v_i\}$ where $v_i \cdot v_i = M_{ij}$

Rounding Vectors

- Beautiful idea: Map each vector v_i to ± 1 by taking a random vector w and setting $x_i=1$ if $w\cdot v_i>0$ and setting $x_i=-1$ if $w\cdot v_i<0$
- Example:

$$x_1 = x_4 = 1, x_2 = x_3 = x_5 = -1$$

Expected Cut Value

- Consider $E\left[\sum_{i,j:i < j,(i,j) \in E(G)} \frac{1-x_i x_j}{2}\right]$
- For each i,j such that $i < j,i,j \in E(G)$, $E\left[\frac{1-x_ix_j}{2}\right] = \frac{\Theta}{\pi} \text{ where } \Theta \in [0,\pi] \text{ is the angle between } v_i \text{ and } v_j$
- On the other hand $\frac{1-M_{ij}}{2} = \frac{1-cos\Theta}{2}$

Approximation Factor

Goemens-Williamson gives a cut with expected value at least

$$\left(\min_{\Theta} \frac{\left(\frac{\Theta}{\pi}\right)}{\left(\frac{1-\cos\Theta}{2}\right)}\right) \sum_{i,j:i < j,(i,j) \in E(G)} \frac{1-E_{ij}}{2}$$

• The first term is $\approx .878$ at $\Theta_{crit} \approx 134^\circ$ $\sum_{i,j:i < j, (i,j) \in E(G)} \frac{1-E_{ij}}{2}$ is an upper bound on the max cut size, so we have a .878 approximation.

Part III: Tight Examples

Showing Tightness

- How can we show this analysis is tight?
- We give two examples where we obtain a cut of value $\approx .878 \sum_{i,j:i < j,(i,j) \in E(G)} \frac{1 E_{ij}}{2}$
- In one example, $\sum_{i,j:i < j,(i,j) \in E(G)} \frac{1-E_{ij}}{2}$ is the value of the maximum cut. In the other example, $.878 \sum_{i,j:i < j,(i,j) \in E(G)} \frac{1-E_{ij}}{2}$ is the value of the maximum cut.

Example 1: Hypercube

- Have one vertex for each point $x_i \in \{\pm 1\}^n$
- We have an edge between x_i and x_j in G if

$$\left|\cos^{-1}\left(\frac{x_i \cdot x_j}{n}\right) - \Theta_{crit}\right| < \delta$$

for an arbitrarily small $\delta > 0$

- Goemans-Williamson value $\approx \frac{1-\cos(\Theta_{crit})}{2}E(G)$
- This is achieved by the coordinate cuts.
- Goemans-Williamson rounds to a random cut which gives value $\approx \frac{\Theta_{crit}}{\pi} E(G)$

Example 2: Sphere

- Take a large number of random points $\{x_i\}$ on the unit sphere
- We have an edge between x_i and x_j in G if

$$\left|\cos^{-1}(x_i \cdot x_j) - \Theta_{crit}\right| < \delta$$

for an arbitrarily small $\delta > 0$

- Goemans-Williamson value $\approx \frac{1-\cos(\Theta_{crit})}{2}E(G)$
- A random hyperplane cut gives value $\approx \frac{\Theta_{crit}}{\pi} E(G)$ and this is essentially optimal.

Proof requirements

- How can we prove the above examples behave as claimed?
- For the hypercube, have to upper bound the value of the Goemans-Williamson program.
- This can be done by determining the eigenvalues of the hypercube graph and using this to analyze the dual (see problem set)
- For the sphere, have to prove that no cut does better than a random hyperplane cut (this is hard, see Feige-Schechtman [FS02])

Part IV: Impressiveness of Goemans-Williamson and Open Problems

Failure of Linear Programming

- Trivial algorithm: Randomly guess which side of the cut each vertex is on.
- Gives approximation factor $\frac{1}{2}$
- Linear programming doesn't do any better, not even polynomial sized linear programming extensions [CLRS13]!

Hardness of beating GW

- Only know NP-hardness for a $\frac{16}{17}$ approximation [Hås01], [TSSW00]
- Unique-Games hard to beat Goemans-Williamson on MAX-CUT [KKMO07]

Open problems

- Can we find a subexponential time algorithm beating Goemans-Williamson on max cut?
- Can we prove constant degree SOS lower bounds for obtaining a better approximation than Goemans-Williamson?

References

- [CLRS13] S. Chan, J. Lee, P. Raghavendra, and D. Steurer. Approximate constraint satisfaction requires large lp relaxations. FOCS 2013.
- [FS02] U. Feige and G. Schechtman. On the optimality of the random hyperplane rounding technique for max cut. Random Structures & Algorithms Probabilistic methods in combinatorial optimization, 20 (3), p. 403 440. 2002
- [GW95] M. X. Goemans and D. P. Williamson. Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming. J. ACM, 42(6):1115-1145, 1995.
- [Hås01] J. Håstad. Some optimal inapproximability results. JACM 48: p.798-869, 2001.
- [KKMO07] S. Khot, G. Kindler, E. Mossell, R. O'Donnell. Optimal Inapproximability Results for MAX-CUT and Other 2-Variable CSPs? SIAM Journal on Computing, 37 (1): p. 319-357, 2007.
- [TSSW00] L. Trevisan, G. Sorkin, M. Sudan, and D. Williamson. Gadgets, approximation, and linear programming. SIAM Journal on Computing, 29(6): p. 2074-2097, 2000.