Lecture 7: Arora Rao Vazirani

Lecture Outline

- Part I: Semidefinite Programming Relaxation for Sparsest Cut
- Part II: Combining Approaches
- Part III: Arora-Rao-Vazirani Analysis Overview
- Part IV: Analyzing Matchings of Close Points
- Part V: Reduction to the Well-Separated Case
- Part VI: Open Problems

Part I: Semidefinite Programming

 Relaxation for Sparsest Cut
Problem Reformulation

- Reformulation: Want to minimize
$\sum_{i, j: i<j,(i, j) \in E(G)}\left(x_{j}-x_{i}\right)^{2}$ over all cut
pseudo-metrics normalized so that
$\sum_{i, j: i<j}\left(x_{j}-x_{i}\right)^{2}=1$
- More precisely, take $d^{2}(i, j)=\left(x_{j}-x_{i}\right)^{2}$ and minimize $\sum_{i, j: i<j,(i, j) \in E(G)} d^{2}(i, j)$ subject to:

1. $\exists c: \forall i, \mathrm{x}_{\mathrm{i}} \in\{-c,+c\}$
2. $\sum_{i, j: i<j} d^{2}(i, j)=1$

Problem Relaxation

- Reformulation: Minimize
$\sum_{i, j: i<j,(i, j) \in E(G)}\left(x_{i}^{2}-2 x_{i} x_{j}+x_{j}^{2}\right)$ subject to:

1. $\exists c: \forall i, \mathrm{x}_{\mathrm{i}} \in\{-c,+c\}$
2. $\sum_{i, j: i<j}\left(x_{i}^{2}-2 x_{i} x_{j}+x_{j}^{2}\right)=1$

- Relaxation: Minimize
$\sum_{i, j: i<j,(i, j) \in E(G)}\left(M_{i i}-2 M_{i j}+M_{j j}\right)$ subject to:

1. $\forall i, j, M_{i i}=M_{j j}$
2. $\sum_{i, j: i<j}\left(M_{i i}-2 M_{i j}+M_{j j}\right)=1$
3. $M \succcurlyeq 0$

Bad Example: The Cycle

- Consider the cycle of length n. The semidefinite program can place the cycle on the unit circle and assign each x_{i} the corresponding vector v_{i}.

Bad Example: The Cycle

- $\sum_{i, j: i<j}\left(d^{2}(i, j)\right)=\Theta\left(n^{2}\right)$
- $\sum_{i, j: i<j,(i, j) \in E(G)}\left(d^{2}(i, j)\right)=\Theta\left(n \cdot 1 / n^{2}\right)$
- Gives sparsity $\Theta\left(1 / n^{3}\right)$, true value is $\Theta\left(1 / \mathrm{n}^{2}\right)$
- Gap is $\Omega(n)$, which is horrible!

Part II: Combining Approaches

Adding the Triangle Inequalities

- Why did the semidefinite program do so much worse than the linear program?
- Missing: Triangle inequalities

$$
d^{2}(i, k) \leq d^{2}(i, j)+d^{2}(j, k)
$$

- What happens if we add the triangle inequalities to the semidefinite program?

Geometric Picture

- Let Θ be the angle between $v_{i}-v_{j}$ and $v_{k}-v_{j}$
- $\left\|v_{k}-v_{i}\right\|^{2}=\left\|v_{j}-v_{i}\right\|^{2}+\left\|v_{k}-v_{j}\right\|^{2}$ if $\Theta=\frac{\pi}{2}$
- $\left\|v_{k}-v_{i}\right\|^{2}>\left\|v_{j}-v_{i}\right\|^{2}+\left\|v_{k}-v_{j}\right\|^{2}$ if $\Theta>\frac{\pi}{2}$
- $\left\|v_{k}-v_{i}\right\|^{2}<\left\|v_{j}-v_{i}\right\|^{2}+\left\|v_{k}-v_{j}\right\|^{2}$ if $\Theta<\frac{\pi}{2}$
- Triangle inequalities \Leftrightarrow no obtuse angles

Fixing Cycle Example

- Putting $n>4$ vectors in a circle violates triangle inequality, so the semidefinite program no longer behaves badly on the cycle. In fact, it gets very close to the right answer.

Goemans-Linial Relaxation

- Semidefinite program (proposed by Goemans and Lineal): Minimize
$\sum_{i, j: i<j:(i, j) \in E(G)}\left(M_{i i}-2 M_{i j}+M_{j j}\right)$ subject to:

1. $\forall i, j, \mathrm{M}_{i i}=M_{j j}$
2. $\forall i, j, k, d^{2}(i, k) \leq d^{2}(i, j)+d^{2}(j, k)$ where $d^{2}(i, j)=M_{i i}-2 M_{i j}+M_{j j}$
3. $\sum_{i, j: i<j}\left(M_{i i}-2 M_{i j}+M_{j j}\right)=1$
4. $M \succcurlyeq 0$

Arora-Rao-Vazirani Theorem

- Theorem [ARV]: The Goemans-Linial relaxation for sparsest cut gives an $O(\sqrt{\log n})$-approximation and has a polynomial time rounding algorithm.

L_{2}^{2} Metric Spaces

- Also called metrics of negative type
- Definition: A metric is an L_{2}^{2} metric if it is possible to assign a vector v_{x} to every point x such that $d(x, y)=\left\|v_{y}-v_{x}\right\|^{2}$.
- Last time: General metrics can be embedded into L^{1} with $O(\log n)$ distortion.
- Theorem [ALNO8]: Any L_{2}^{2} metric embeds into L^{1} with $O(\sqrt{\log n}(\log \log n))$ distortion.
- [ARV] analyzes the algorithm more directly

Goemans-Linial Relaxation and SOS

- Degree 4 SOS captures the triangle inequality: if $x_{i}^{2}=x_{j}^{2}=x_{k}^{2}$ then

$$
\begin{aligned}
& x_{i}^{2}\left(x_{k}-x_{i}\right)^{2} \leq x_{i}^{2}\left(x_{j}-x_{i}\right)^{2}+x_{i}^{2}\left(x_{k}-x_{j}\right)^{2} \\
& \Leftrightarrow 2 x_{i}^{2}\left(x_{i}^{2}-x_{i} x_{k}\right) \leq 2 x_{i}^{2}\left(2 x_{i}^{2}-x_{i} x_{j}-x_{i} x_{j}\right)
\end{aligned}
$$

- Proof:

$$
\begin{gathered}
\left(x_{i}-x_{j}\right)^{2}\left(x_{j}-x_{k}\right)^{2}=4\left(x_{i}^{2}-x_{i} x_{j}\right)\left(x_{i}^{2}-x_{j} x_{k}\right) \\
=4 x_{i}^{2}\left(x_{i}^{2}-x_{i} x_{j}-x_{j} x_{k}+x_{i} x_{k}\right) \geq 0
\end{gathered}
$$

- Thus, degree 4 SOS captures the Goemans-Linial relaxation

Part III: Arora-Rao-Vazirani Analysis
Overview

Well-Spread Case

- Semidefinite program gives us one vector v_{i} for each vertex i.
- We first consider the case when these vectors are spread out.
- Definition: We say that a set of n vectors $\left\{v_{i}\right\}$ is well-spread if it can be scaled so that:

1. $\forall i,\left\|v_{i}\right\| \leq 1$
2. $\frac{1}{n^{2}} \sum_{i<j} d_{i j}^{2}$ is $\Omega(1)$ (the average squared distance between vectors is constant)

- We will assume we are using this scaling.

Structure Theorem

- Theorem: Given a set of n vectors $\left\{v_{i}\right\}$ which are well-spread and obey the triangle inequality, there exist well-separated subsets X and Y of these vectors of linear size. In other words, there exist X, Y such that:

1. X and Y are Δ far apart (i.e. $\forall v_{i} \in X, v_{j} \in$

$$
\left.Y, d_{i j}^{2} \geq \Delta\right) \text { where } \Delta \text { is } \Omega\left(\frac{1}{\sqrt{\log n}}\right)
$$

2. $|X|$ and $|Y|$ are both $\Omega(n)$

Finding a Sparse Cut

- Idea: If we have well-separated subsets X, Y, take a random cut of the form $\left(S_{r}, \bar{S}_{r}\right)$ where
$S_{r}=\left\{i: d^{2}\left(v_{i}, X\right)=\min _{j: v_{j} \in Y} d_{i j}^{2} \leq r\right\}$ and $r \in[0, \Delta]$
- All $(i, j) \in E(G)$ contribute at most $\frac{d_{i j}^{2}}{\Delta}$ to the expected number of edges cut and $d_{i j}^{2}$ to $\sum_{i, j: i<j,(i, j) \in E(G)} d_{i j}^{2}$ (the number of edges the SDP "thinks" are cut)

Finding a Sparse Cut Continued

- Since X, Y have size $\Omega(n)$ and are always on opposite sides of the cut, we always have that $\left|S_{r}\right| \cdot\left|\bar{S}_{r}\right|$ is $\Theta\left(n^{2}\right)$. This matches $\sum_{i, j: i<j} d_{i j}^{2}$ up to a constant factor. (this is why we need X and Y to have linear size!)
- Thus, the expected ratio of the sparsity to the SDP value is at most $\frac{1}{\Delta}=0(\sqrt{\log n})$, as needed.

Tight Example: Hypercube

- Take the hypercube $\left\{-\frac{1}{\sqrt{\log _{2} n}}, \frac{1}{\sqrt{\log _{2} n}}\right\}^{\log _{2} n}$
- $\mathrm{X}=\left\{x: \sum_{i} x_{i} \leq-1\right\}$ and $Y=\left\{y: \sum_{i} x_{i} \geq 1\right\}$ have the following properties:

1. X and Y have linear size
2. $\forall x \in X, y \in Y, x, y$ differ in $\geq 2 \sqrt{\log _{2} n}$
coordinates. Thus, $d^{2}(x, y) \geq \frac{2 \sqrt{\log _{2} n}}{\log _{2} n}=\frac{2}{\sqrt{\log _{2} n}}$

Finding Well-Separated Sets

- Let d be the dimension such that $\forall i, v_{i} \in \mathbb{R}^{d}$.
- Algorithm (Parameters $\sigma>0, \Delta, d$)

1. Choose a random $u \in \mathbb{R}^{d}$.
2. Find a value a such that there are $\Omega(n)$ vectors v_{i} with $v_{i} \cdot u \leq a$ and $\Omega(n)$ vectors v_{j} with $v_{j} \cdot u \geq$ $a+\frac{\sigma}{\sqrt{d}}$. Let X^{\prime} and Y^{\prime} be these two sets of vectors
3. As long as there is a pair $x \in X^{\prime}, y \in Y^{\prime}$ such that $d(x, y)<\Delta$, delete x from X^{\prime} and y from Y^{\prime}. The resulting sets will be the desired X, Y.

- Need to show: $\mathrm{P}[X, Y$ have size $\Omega(n)]$ is $\Omega(1)$

Finding Well-Separated Sets

- Will first explain why step 1,2 succeed with probability $2 \delta>0$.
- Will then show that the probability step 3 deletes a linear number of points is $\leq \delta$
- Together, this implies that the entire algorithm succeeds with probability at least $\delta>0$.

Behavior of Gaussian Projections

- What happens if we project a vector v of length l in a random direction in \mathbb{R}^{d} ?
- Without loss of generality, assume $v=e_{1}$
- To pick a random unit vector in \mathbb{R}^{d}, choose each coordinate according to $N\left(0, \frac{1}{d}\right)$ (the normal distribution with mean 0 and standard deviation $\frac{1}{\sqrt{d}}$), then rescale.
- If d is not too small, w.h.p. very little rescaling will be needed.

Behavior of Gaussian Projections

- What happens if we project a vector of length l in a random direction in \mathbb{R}^{d} ?
- Resulting value has a distribution which is \approx normal distribution of mean 0 , standard deviation $\frac{1}{\sqrt{d}}$ (difference comes from the rescaling step)

Success of Steps 1,2

- If we take a random $u \in \mathbb{R}^{d}$, with probability

$$
\Omega(1), \sum_{i<j}\left|\left(v_{j}-v_{i}\right) \cdot u\right| \text { is } \Omega\left(\frac{n^{2}}{\sqrt{d}}\right)
$$

- Note: this can fail with non-negligible probability, consider the case when $\forall i, v_{i}= \pm v$. If u is orthogonal to v then everything is projected to 0 .
- For arbitrarily small $\epsilon>0$, with very high probability, $\left|v_{i} \cdot u\right|$ is $O\left(\frac{1}{\sqrt{d}}\right)$ for $(1-\epsilon) n$ of the $i \in[1, n]$

Success of Steps 1,2

- Together, these facts imply that if we choose a random unit vector u, with probability $\Omega(1)$, there exist $X^{\prime}, Y^{\prime}, a_{1}, a_{2}$ such that

1. X^{\prime}, Y^{\prime} have size $\Omega(n)$
2. $\forall x \in X^{\prime}, u \cdot x \leq a_{1}$
3. $\forall y \in Y^{\prime}, u \cdot y \geq a_{2}$
4. $a_{2}-a_{1}$ is $\Omega(1)$

Remaining Steps

- We need to show that the probability step 3 eliminates $\frac{\min \{|X|,|Y|\}}{2}$ pairs of points is at most δ
- We also need to show how the general case can be reduced to the well-spread case.

Part IV: Analyzing Matchings of Close Points

Matching Covers

- If part 3 of the algorithm causes it to fail with probability δ, then for δ fraction of the directions u there is a matching M_{u} of points of size $c^{\prime} n$ such that for each pair $\left(v_{i}, v_{j}\right)$ in the matching:

$$
\begin{aligned}
& \text { 1. } \mathrm{d}^{2}\left(v_{i}, v_{j}\right) \leq \Delta \\
& \text { 2. }\left|\left(v_{j}-v_{i}\right) \cdot u\right| \geq \frac{2 \sigma}{\sqrt{d}}
\end{aligned}
$$

where $\delta, c^{\prime}, \sigma>0$ are constants

- Note: Corresponds to Definition 4 in [ARV]
- Define the matching graph M to be $M=\cup_{u} M_{u}$

Analyzing $\Delta=\Omega\left(\frac{1}{\log n}\right)$

- Assume that $d\left(v_{i}, v_{j}\right) \leq \sqrt{\Delta}$ for some v_{i}, v_{j}
- $\mathrm{P}\left[\left|\left(v_{j}-v_{i}\right) \cdot u\right| \geq \frac{2 \sigma}{\sqrt{d}}\right] \sim e^{-\frac{4 \sigma^{2}}{d^{2}\left(v_{i} v_{j}\right)}} \leq e^{-\frac{4 \sigma^{2}}{\Delta}}$
- If Δ is a sufficiently small constant times $\frac{1}{\log n}$, with high probability there are no pairs of close points at all between X^{\prime} and Y^{\prime} !

Key Idea for Larger Δ

- When the algorithm fails in step 3 , this gives us pairs of points $\left(v_{i}, v_{j}\right)$ which are edges of the matching graph M, implying that $d^{2}\left(v_{i}, v_{j}\right) \leq \Delta$ and $\left|\left(v_{j}-v_{i}\right) \cdot u\right| \geq \frac{2 \sigma}{\sqrt{d}}$
- We will use this to find pairs of points $\left(v_{i}, v_{j}\right)$ which are k steps apart in the matching graph where $\left|\left(v_{j}-v_{i}\right) \cdot u\right| \geq \frac{k \sigma}{\sqrt{d}}$

Key Idea for Larger Δ Continued

- We will find pairs of points $\left(v_{i}, v_{j}\right)$ which are k steps apart in the matching graph where
$\left|\left(v_{j}-v_{i}\right) \cdot u\right| \geq \frac{k \sigma}{\sqrt{d}}$
- Using triangle inequality, $d^{2}\left(v_{i}, v_{j}\right) \leq k \Delta$
- $\mathrm{P}\left[\left|\left(v_{j}-v_{i}\right) \cdot u\right| \geq \frac{k \sigma}{\sqrt{d}}\right] \sim e^{-\frac{k^{2} \sigma^{2}}{d^{2}\left(v_{i}, v_{j}\right)}} \leq e^{-\frac{k \sigma^{2}}{\Delta}}$
- For $\Delta=\Omega\left(\frac{1}{\sqrt{\log n}}\right)$, if we can apply this with $k=$ $\Omega(\sqrt{\log n})$, we again obtain a contradiction.

Average Degree to Minimal Degree

- Lemma: If a graph G has average degree d, we can find a non-empty subgraph of G which has minimal degree $\frac{d}{4}$.
- Proof: Iteratively delete vertices which have degree $\leq \frac{d}{4}$. The total number of edges deleted is at most $\frac{n d}{4}$. However, $2|E(G)| \geq n d$, so there must be $\geq \frac{n d}{4}$ edges remaining.

Minimal Probability Guarantee

- Average probability that a vertex is matched is at least $c^{\prime} \delta$
- Can apply a similar idea and delete any vertex which is matched with probability $\leq \frac{c^{\prime} \delta}{4}$
- By similar logic, at least half the edges are preserved.
- This implies that there are at least $c^{\prime} n$ vertices remaining (otherwise more than half of every matching of $\geq c^{\prime} n$ edges is deleted)
- Note: Corresponds to Lemma 4 of [ARV09]

Minimal Probability Guarantee

- Corollary: There is a set of vertices X of size \geq $c^{\prime} n$ such that
$\forall x \in X, P\left[x\right.$ is matched with an $\left.x^{\prime} \in X\right] \geq \delta^{\prime}$
where $\delta^{\prime}=\frac{c^{\prime} \delta}{4}$

Building Up Projection Distances

- How can we find pairs of points whose projected distance is larger and larger by taking steps in the matching graph?
- Let's assume we have a very convenient inductive setup.

Setup

- Have a set of points X of size $\geq c^{\prime} n$
$\forall x \in X, P\left[x\right.$ is matched with an $\left.x^{\prime} \in X\right] \geq \delta^{\prime}$
- Inductive setup: Assume we also have a subset $Z \subseteq X$ of points of size $\tau|X|$ such that $\forall z \in Z, P\left[\exists z^{\prime} \in X: d_{M}\left(z, z^{\prime}\right) \leq k,\left(z-z^{\prime}\right) \cdot u \geq \frac{k \sigma}{\sqrt{d}}\right] \geq 1-\frac{\delta^{\prime}}{4}$
where $d_{M}\left(z, z^{\prime}\right)$ is the number of steps required to reach z^{\prime} from z in the matching graph
- Note: This corresponds to Definitions 6,8 of [ARV]

Setup Rephrased

- X is a set of points where every $x \in X$ is matched to another $x^{\prime} \in X$ for $\geq \delta^{\prime}$ fraction of the directions
- Have a subset $Z \subseteq X$ of size $\geq \tau|X|$ where each $z \in Z$ is "covered" in $\geq 1-\frac{\delta^{\prime}}{4}$ fraction of the directions by points which are $\leq k$ steps away in the matching graph whose projected distance is
$\geq \frac{k \sigma}{\sqrt{d}}$

Composition Step

Composition Step

- Given a direction u, for each point $z \in Z$:

1. Check if z is matched in $M_{u}=M_{-u}$
2. If so, let x^{\prime} be the point z is matched with.

$$
\left|\left(z-x^{\prime}\right) \cdot u\right| \geq \frac{2 \sigma}{\sqrt{d}}
$$

3. If $\left(z-x^{\prime}\right) \cdot u>0$, check if z is covered in direction u. If $\left(z-x^{\prime}\right) \cdot u<0$ check if z is covered in direction $-u$. With probability $\geq 1-\frac{\delta^{\prime}}{2}, z$ is covered in both directions. Let $z^{\prime}=$ covering point.
4. Observe that $\left|\left(z^{\prime}-x^{\prime}\right) \cdot u\right| \geq \frac{k \sigma+2 \sigma}{\sqrt{d}}$ and $d_{M}\left(x^{\prime}, z^{\prime}\right) \leq k+1$

Composition Step

- Have that the density of the new covering edges
is at least $\frac{\tau \delta^{\prime}}{2}$.
- Following the same kind of logic we used to go from average to minimal degree, can find a subset $Z^{\prime} \subseteq X$ of size $\geq \frac{\tau \delta^{\prime}}{8}|X|$ where every vertex $z^{\prime} \in Z^{\prime}$ is covered in $\geq \frac{\tau \delta^{\prime}}{8}$ of the directions.
- Note: Corresponds to Lemma 11 of [ARV]

Boosting Lemma

- How can we recover the inductive hypothesis?
- Can boost the covering probability to almost 1 with a small loss in the projection length!
- Corollary 12 of [ARV] rephrased: If the covering vectors have length at most $\frac{\sigma}{16 \sqrt{\log \left(\frac{16}{\tau \delta^{\prime}}\right)}+8 \sqrt{\log \left(\frac{8}{\delta^{\prime}}\right)}}$ then
if z is covered with probability $\frac{\tau \delta^{\prime}}{8}$ with projection length $\frac{k \sigma+2 \sigma}{\sqrt{d}}$, it is covered with probability $1-$ $\delta^{\prime} / 4$ with projection length $\frac{(k+1) \sigma}{\sqrt{d}}$

Bound on k and Δ

- If we apply this directly:
$-\tau \sim\left(\delta^{\prime}\right)^{-k}$
- Need covering vectors to have length $O\left(\frac{1}{\sqrt{\log \tau}}\right)=$ $O\left(\frac{1}{\sqrt{k}}\right)$
- Guaranteed to have length $\leq \sqrt{k \Delta}$
- We can take $k=\Omega\left(\Delta^{-\frac{1}{2}}\right)$. We want $\frac{k}{\Delta}$ to be a large constant times $\log (n)$, which means we can take $\Delta=\Omega\left((\log n)^{-2 / 3}\right)$

Reaching $k=\Omega(\sqrt{\log n})$

- To reach $k=\Omega(\sqrt{\log n})$, a more careful argument is needed, see [ARV].
- Note: We should not expect k to be any higher than $\mathrm{O}(\sqrt{\log n})$. Recalling that the projection length with k steps is $\frac{k \sigma}{\sqrt{d}}$, if $d=\Theta(\log n)$ (matching the hypercube example) and k is $\omega(\sqrt{\log n})$ then this is $\omega(1)$, which is too large!

Part V: Reduction to the WellSeparated Case

Two Cases

- Take the scaling where $\sum_{i, j: i<j} d^{2}(i, j)=\binom{n}{2}$
(i.e. the average squared distance between pairs of points is 1)
- One of the following two cases holds:

1. There exists a point x_{0} such that $\frac{n}{10}$ other points are within squared distance $\frac{1}{10}$ of x_{0}
2. For all points x, less than $\frac{n}{10}$ other points are within squared distance $\frac{1}{10}$ of x

Case \#1

- Assume there exists a point x_{0} such that $\frac{n}{10}$ other points are within squared distance $\frac{1}{10}$ of x_{0}
- Let $X=\left\{\mathrm{x}: \mathrm{d}^{2}\left(\mathrm{x}, \mathrm{x}_{0}\right) \leq \frac{1}{10}\right\}$
- Key idea: Take the Fréchet embedding with respect to X !
- In particular, take

$$
d_{X}(y, z)=\left|d^{2}(y, X)-d^{2}(z, X)\right|
$$

Case \#1 Continued

- We will show that

$$
\frac{\sum_{i, j: i<j,(i, j) \in E(G)} d_{X}(i, j)}{\sum_{i, j: i<j} d_{X}(i, j)} \text { is } O\left(\frac{\sum_{i, j: i<j,(i, j) \in E(G)} d^{2}(i, j)}{\sum_{i, j: i<j} d^{2}(i, j)}\right)
$$

- d_{X} is an L^{1} metric, so this gives an $O(1)$ approximation!
- First note that $\sum_{i, j: i<j,(i, j) \in E(G)} d_{X}(i, j)$ is less than or equal to $\sum_{i, j: i<j,(i, j) \in E(G)} d^{2}(i, j)$
- We just need to show that $\sum_{i, j: i<j} d_{X}(i, j)$ is $\Omega\left(n^{2}\right)$

Case \#1 Continued

- Proposition: The average squared distance of points outside of X from X is at least $\frac{1}{5}$
- Proof: If this were not the case then the average squared distance between points would be <1 as for all y, z,

$$
d^{2}(y, z) \leq d^{2}(y, X)+d^{2}(z, X)+\frac{1}{5}
$$

- Corollary: $\sum_{i, j: i<j} d_{X}(i, j)$ is $\Theta\left(n^{2}\right)$. To show this, it is sufficient to consider the pairs where exactly one of i, j are in X.

Case \#2

- Assume that for all points x, there are fewer than $\frac{n}{10}$ other points which are within squared distance $\frac{1}{10}$ of x
- Proposition: There is a point x_{0} such that at least $\frac{n}{2}$ other points are within distance 2 of x_{0}
- Proof: If this were not the case then the average distance between points would be >1.
- Let X be the set of points within distance 2 of x_{0}.

Case \#2 Continued

- Key idea: Subtract x_{0} from all vectors!
- After this translation:
- All points in X have length ≤ 2
- For all points $x \in X$, there are at least $\frac{\mathrm{n}}{2}-\frac{\mathrm{n}}{10}=\frac{2 n}{5}$ points in X which have squared distance more than $\frac{1}{10}$ from X. Thus, the average squared distance between points in X is $\Omega(1)$
- Restricting to X and scaling down by a factor of 2 , we are now in the well-spread case

Part VI: Open Problems

Lower Bounds

- Lower Bounds have been shown for this semidefinite program
- Khot and Vishnoi [KV05] proved the first superconstant lower bound.
- For weighted graphs, Naor and Young [NY17] showed an $\Omega(\sqrt{\log n})$ lower bound (which is tight up to a loglogn factor).
- However, these lower bounds don't apply even to degree 4 SOS!

Open Questions

- Is this also true for unweighted graphs?
- Does degree 4 SOS or higher degree SOS give further improvements? Can we show a superconstant lower bound for a constant number of rounds of SOS?

References

- [ALNO8] S. Arora, J. R. Lee, A. Naor. Euclidean distortion and the sparsest cut. J. Amer. Math. Soc. 21 (1), p. 1-21. 2008
- [ARV] S. Arora, S. Rao, U. Vazirani. Expander Flows, Geometric Embeddings and Graph Partitioning. https://www.cs.princeton.edu/~arora/pubs/arvfull.pdf
- [KV05] S. Khot and N. Vishnoi. The unique games conjecture, integrality gap for cut problems and embeddability of negative type metrics into L^{1}. FOCS 2005
- [NY17] A. Naor and R. Young. The integrality gap of the Goemans--Linial SDP relaxation for Sparsest Cut is at least a constant multiple of $\sqrt{\operatorname{logn}}$. STOC 2017

