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Part I: Semidefinite Programming 
Relaxation for Sparsest Cut 



• Reformulation: Want to minimize 

σ𝑖,𝑗:𝑖<𝑗, 𝑖,𝑗 ∈𝐸(𝐺) 𝑥𝑗 − 𝑥𝑖
2

over all cut 

pseudo-metrics normalized so that 

σ𝑖,𝑗:𝑖<𝑗 𝑥𝑗 − 𝑥𝑖
2

= 1

• More precisely, take 𝑑2 𝑖, 𝑗 = 𝑥𝑗 − 𝑥𝑖
2

and 

minimize σ𝑖,𝑗:𝑖<𝑗, 𝑖,𝑗 ∈𝐸(𝐺) 𝑑2(𝑖, 𝑗) subject to:

1. ∃𝑐: ∀𝑖, xi ∈ {−𝑐, +𝑐}

2. σ𝑖,𝑗:𝑖<𝑗 𝑑2(𝑖, 𝑗) = 1

Problem Reformulation



• Reformulation: Minimize

σ𝑖,𝑗:𝑖<𝑗, 𝑖,𝑗 ∈𝐸(𝐺)(𝑥𝑖
2 − 2𝑥𝑖𝑥𝑗 + 𝑥𝑗

2) subject to:

1. ∃𝑐: ∀𝑖, xi ∈ {−𝑐, +𝑐}

2. σ𝑖,𝑗:𝑖<𝑗 (𝑥𝑖
2 − 2𝑥𝑖𝑥𝑗 + 𝑥𝑗

2) = 1

• Relaxation: Minimize  

σ𝑖,𝑗:𝑖<𝑗, 𝑖,𝑗 ∈𝐸(𝐺)(𝑀𝑖𝑖−2𝑀𝑖𝑗 + 𝑀𝑗𝑗) subject to:

1. ∀𝑖, 𝑗, 𝑀𝑖𝑖 = 𝑀𝑗𝑗

2. σ𝑖,𝑗:𝑖<𝑗 (𝑀𝑖𝑖−2𝑀𝑖𝑗 + 𝑀𝑗𝑗) = 1

3. 𝑀 ≽ 0

Problem Relaxation



• Consider the cycle of length 𝑛. The semidefinite 
program can place the cycle on the unit circle 
and assign each 𝑥𝑖 the corresponding vector 𝑣𝑖.

Bad Example: The Cycle
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• σ𝑖,𝑗:𝑖<𝑗(𝑑2(𝑖, 𝑗)) = Θ(𝑛2)

• σ𝑖,𝑗:𝑖<𝑗, 𝑖,𝑗 ∈𝐸(𝐺)(𝑑2(𝑖, 𝑗)) = Θ(𝑛 ⋅ 1/𝑛2)

• Gives sparsity Θ(1/𝑛3), true value is Θ(1/n2)

• Gap is Ω(𝑛), which is horrible!

Bad Example: The Cycle
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Part II: Combining Approaches



• Why did the semidefinite program do so much 
worse than the linear program?

• Missing: Triangle inequalities

𝑑2 𝑖, 𝑘 ≤ 𝑑2(𝑖, 𝑗) + 𝑑2(𝑗, 𝑘)

• What happens if we add the triangle inequalities 
to the semidefinite program?

Adding the Triangle Inequalities



• Let Θ be the angle between 𝑣𝑖 − 𝑣𝑗 and 𝑣𝑘 − 𝑣𝑗

• 𝑣𝑘 − 𝑣𝑖
2 = 𝑣𝑗 − 𝑣𝑖

2
+ 𝑣𝑘 − 𝑣𝑗

2
if Θ =

𝜋

2

• 𝑣𝑘 − 𝑣𝑖
2 > 𝑣𝑗 − 𝑣𝑖

2
+ 𝑣𝑘 − 𝑣𝑗

2
if Θ >

𝜋

2

• 𝑣𝑘 − 𝑣𝑖
2 < 𝑣𝑗 − 𝑣𝑖

2
+ 𝑣𝑘 − 𝑣𝑗

2
if Θ <

𝜋

2

• Triangle inequalities ⬄ no obtuse angles

Geometric Picture

𝑣𝑖

𝑣𝑗

𝑣𝑘

0

Θ



• Putting 𝑛 > 4 vectors in a circle violates triangle 
inequality, so the semidefinite program no 
longer behaves badly on the cycle. In fact, it gets 
very close to the right answer.

Fixing Cycle Example

𝑣𝑖

𝑣𝑗

𝑣𝑘

0
Θ



Goemans-Linial Relaxation

• Semidefinite program (proposed by Goemans 
and Lineal): Minimize 
σ𝑖,𝑗:𝑖<𝑗: 𝑖,𝑗 ∈𝐸(𝐺)(𝑀𝑖𝑖 − 2𝑀𝑖𝑗 + 𝑀𝑗𝑗) subject to:

1. ∀𝑖, 𝑗, M𝑖𝑖 = 𝑀𝑗𝑗

2. ∀𝑖, 𝑗, 𝑘, 𝑑2(𝑖, 𝑘) ≤ 𝑑2(𝑖, 𝑗) + 𝑑2(𝑗, 𝑘) where 
𝑑2(𝑖, 𝑗) = 𝑀𝑖𝑖 − 2𝑀𝑖𝑗 + 𝑀𝑗𝑗

3. σ𝑖,𝑗:𝑖<𝑗 𝑀𝑖𝑖 − 2𝑀𝑖𝑗 + 𝑀𝑗𝑗 = 1

4. 𝑀 ≽ 0



Arora-Rao-Vazirani Theorem

• Theorem [ARV]: The Goemans-Linial
relaxation for sparsest cut gives an 

𝑂 𝑙𝑜𝑔𝑛 -approximation and has a 

polynomial time rounding algorithm.



• Also called metrics of negative type

• Definition: A metric is an 𝐿2
2 metric if it is possible 

to assign a vector 𝑣𝑥 to every point 𝑥 such that 

𝑑 𝑥, 𝑦 = 𝑣𝑦 − 𝑣𝑥
2

.

• Last time: General metrics can be embedded into 
𝐿1 with 𝑂 log 𝑛 distortion.

• Theorem [ALN08]: Any 𝐿2
2 metric embeds into 𝐿1

with 𝑂 𝑙𝑜𝑔𝑛(𝑙𝑜𝑔𝑙𝑜𝑔𝑛) distortion.

• [ARV] analyzes the algorithm more directly

𝐿2
2 Metric Spaces



• Degree 4 SOS captures the triangle inequality: if 
𝑥𝑖

2 = 𝑥𝑗
2 = 𝑥𝑘

2 then

𝑥𝑖
2 𝑥𝑘 − 𝑥𝑖

2 ≤ 𝑥𝑖
2 𝑥𝑗 − 𝑥𝑖

2
+ 𝑥𝑖

2 𝑥𝑘 − 𝑥𝑗
2

⬄2𝑥𝑖
2 𝑥𝑖

2 − 𝑥𝑖𝑥𝑘 ≤ 2𝑥𝑖
2(2𝑥𝑖

2 − 𝑥𝑖𝑥𝑗 − 𝑥𝑖𝑥𝑗)

• Proof: 

𝑥𝑖 − 𝑥𝑗
2

𝑥𝑗 − 𝑥𝑘
2

= 4(𝑥𝑖
2 − 𝑥𝑖𝑥𝑗)(𝑥𝑖

2 − 𝑥𝑗𝑥𝑘)

= 4𝑥𝑖
2 𝑥𝑖

2 − 𝑥𝑖𝑥𝑗 − 𝑥𝑗𝑥𝑘 + 𝑥𝑖𝑥𝑘 ≥ 0

• Thus, degree 4 SOS captures the Goemans-Linial
relaxation

Goemans-Linial Relaxation and SOS



Part III: Arora-Rao-Vazirani Analysis 
Overview



• Semidefinite program gives us one vector 𝑣𝑖 for 
each vertex 𝑖.

• We first consider the case when these vectors 
are spread out.

• Definition: We say that a set of 𝑛 vectors {𝑣𝑖} is 
well-spread if it can be scaled so that:
1. ∀𝑖, 𝑣𝑖 ≤ 1

2.
1

𝑛2
σ𝑖<𝑗 𝑑𝑖𝑗

2 is Ω(1) (the average squared distance 

between vectors is constant)

• We will assume we are using this scaling.

Well-Spread Case



• Theorem: Given a set of 𝑛 vectors {𝑣𝑖} which 
are well-spread and obey the triangle 
inequality, there exist well-separated subsets 𝑋
and 𝑌 of these vectors of linear size. In other 
words, there exist 𝑋, 𝑌 such that:

1. 𝑋 and 𝑌 are Δ far apart (i.e. ∀𝑣𝑖 ∈ 𝑋, 𝑣𝑗 ∈

𝑌, 𝑑𝑖𝑗
2 ≥ Δ) where Δ is Ω

1

𝑙𝑜𝑔𝑛

2. |𝑋| and |𝑌| are both Ω(𝑛)

Structure Theorem



• Idea: If we have well-separated subsets 𝑋, 𝑌, 
take a random cut of the form (𝑆𝑟 , ҧ𝑆𝑟) where

𝑆𝑟 = {𝑖: 𝑑2 𝑣𝑖 , 𝑋 = min
𝑗:𝑣𝑗∈𝑌

𝑑𝑖𝑗
2 ≤ 𝑟} and 𝑟 ∈ 0, Δ

• All 𝑖, 𝑗 ∈ 𝐸(𝐺) contribute at most 
𝑑𝑖𝑗

2

Δ
to the 

expected number of edges cut and 𝑑𝑖𝑗
2 to 

σ𝑖,𝑗:𝑖<𝑗, 𝑖,𝑗 ∈𝐸(𝐺) 𝑑𝑖𝑗
2 (the number of edges the 

SDP “thinks” are cut)

Finding a Sparse Cut



• Since 𝑋, 𝑌 have size Ω(𝑛) and are always on 
opposite sides of the cut, we always have that 

𝑆𝑟 ⋅ | ҧ𝑆𝑟| is Θ 𝑛2 . This matches σ𝑖,𝑗:𝑖<𝑗 𝑑𝑖𝑗
2 up 

to a constant factor. (this is why we need 𝑋 and 
𝑌 to have linear size!)

• Thus, the expected ratio of the sparsity to the 

SDP value is at most 
1

Δ
= O 𝑙𝑜𝑔𝑛 , as 

needed.

Finding a Sparse Cut Continued



• Take the hypercube −
1

log2 𝑛
,

1

log2 𝑛

log2 𝑛

• X = 𝑥: σ𝑖 𝑥𝑖 ≤ −1 and Y = 𝑦: σ𝑖 𝑥𝑖 ≥ 1

have the following properties:

1. 𝑋 and 𝑌 have linear size

2. ∀𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌, 𝑥, 𝑦 differ in ≥ 2 log2 𝑛

coordinates. Thus, 𝑑2 𝑥, 𝑦 ≥
2 log2 𝑛

log2 𝑛
=

2

log2 𝑛

Tight Example: Hypercube



• Let 𝑑 be the dimension such that ∀𝑖, 𝑣𝑖 ∈ ℝ𝑑.

• Algorithm (Parameters 𝜎 > 0, Δ, 𝑑)
1. Choose a random 𝑢 ∈ ℝ𝑑.

2. Find a value 𝑎 such that there are Ω(𝑛) vectors 𝑣𝑖
with 𝑣𝑖 ⋅ 𝑢 ≤ 𝑎 and Ω(𝑛) vectors 𝑣𝑗 with 𝑣𝑗 ⋅ 𝑢 ≥

𝑎 +
𝜎

𝑑
. Let 𝑋′ and 𝑌′ be these two sets of vectors

3. As long as there is a pair 𝑥 ∈ 𝑋′, 𝑦 ∈ 𝑌′ such that 
𝑑 𝑥, 𝑦 < Δ, delete 𝑥 from 𝑋′ and 𝑦 from 𝑌′. The 
resulting sets will be the desired 𝑋, 𝑌.

• Need to show: P[𝑋, 𝑌 have size Ω(𝑛)] is Ω(1)

Finding Well-Separated Sets 



• Will first explain why step 1,2 succeed with 
probability 2𝛿 > 0.

• Will then show that the probability step 3 
deletes a linear number of points is ≤ 𝛿

• Together, this implies that the entire algorithm 
succeeds with probability at least 𝛿 > 0.

Finding Well-Separated Sets 



• What happens if we project a vector 𝑣 of length 
𝑙 in a random direction in ℝ𝑑?

• Without loss of generality, assume 𝑣 = 𝑒1

• To pick a random unit vector in ℝ𝑑, choose 

each coordinate according to 𝑁 0,
1

𝑑
(the 

normal distribution with mean 0 and standard 

deviation 
1

𝑑
), then rescale.

• If 𝑑 is not too small, w.h.p. very little rescaling 
will be needed.

Behavior of Gaussian Projections 



• What happens if we project a vector of length 𝑙
in a random direction in ℝ𝑑?

• Resulting value has a distribution which is ≈
normal distribution of mean 0, standard 

deviation 
1

𝑑
(difference comes from the 

rescaling step)

Behavior of Gaussian Projections 



• If we take a random 𝑢 ∈ ℝ𝑑, with probability 

Ω(1), σ𝑖<𝑗 (𝑣𝑗 − 𝑣𝑖) ⋅ 𝑢 is Ω
𝑛2

𝑑

• Note: this can fail with non-negligible 
probability, consider the case when ∀𝑖, 𝑣𝑖 = ±𝑣. 
If 𝑢 is orthogonal to 𝑣 then everything is 
projected to 0.

• For arbitrarily small 𝜖 > 0, with very high 

probability, |𝑣𝑖 ⋅ 𝑢| is 𝑂
1

𝑑
for 1 − 𝜖 𝑛 of the 

𝑖 ∈ [1, 𝑛]

Success of Steps 1,2 



• Together, these facts imply that if we choose a 
random unit vector 𝑢, with probability Ω(1), 
there exist 𝑋′, 𝑌′, 𝑎1, 𝑎2 such that

1. 𝑋′, 𝑌′ have size Ω(𝑛)

2. ∀𝑥 ∈ 𝑋′, 𝑢 ⋅ 𝑥 ≤ 𝑎1

3. ∀𝑦 ∈ 𝑌′, 𝑢 ⋅ 𝑦 ≥ 𝑎2

4. 𝑎2 − 𝑎1 is Ω(1)

Success of Steps 1,2 



• We need to show that the probability step 3 

eliminates 
𝑚𝑖𝑛{ 𝑋 ,|𝑌|}

2
pairs of points is at most 𝛿

• We also need to show how the general case can 
be reduced to the well-spread case.

Remaining Steps



Part IV: Analyzing Matchings of 
Close Points



Matching Covers

• If part 3 of the algorithm causes it to fail with 
probability 𝛿, then for 𝛿 fraction of the 
directions 𝑢 there is a matching 𝑀𝑢 of points of 
size 𝑐′𝑛 such that for each pair (𝑣𝑖 , 𝑣𝑗) in the 
matching:

1. d2 𝑣𝑖 , 𝑣𝑗 ≤ Δ

2. 𝑣𝑗 − 𝑣𝑖 ⋅ 𝑢 ≥
2𝜎

𝑑

where 𝛿, 𝑐′, 𝜎 > 0 are constants

• Note: Corresponds to Definition 4 in [ARV]

• Define the matching graph 𝑀 to be 𝑀 =∪𝑢 𝑀𝑢



• Assume that 𝑑 𝑣𝑖 , 𝑣𝑗 ≤ Δ for some 𝑣𝑖 , 𝑣𝑗

• P 𝑣𝑗 − 𝑣𝑖 ⋅ 𝑢 ≥
2𝜎

𝑑
∼ 𝑒

−
4𝜎2

𝑑2(𝑣𝑖,𝑣𝑗) ≤ 𝑒−
4𝜎2

Δ

• If Δ is a sufficiently small constant times 
1

𝑙𝑜𝑔𝑛
, 

with high probability there are no pairs of close 
points at all between 𝑋′ and 𝑌′!

Analyzing Δ = Ω
1

𝑙𝑜𝑔𝑛



• When the algorithm fails in step 3, this gives us 
pairs of points (𝑣𝑖 , 𝑣𝑗) which are edges of the 

matching graph 𝑀, implying that 𝑑2 𝑣𝑖 , 𝑣𝑗 ≤ Δ

and 𝑣𝑗 − 𝑣𝑖 ⋅ 𝑢 ≥
2𝜎

𝑑

• We will use this to find pairs of points (𝑣𝑖 , 𝑣𝑗)

which are 𝑘 steps apart in the matching graph 

where 𝑣𝑗 − 𝑣𝑖 ⋅ 𝑢 ≥
𝑘𝜎

𝑑

Key Idea for Larger Δ



• We will find pairs of points (𝑣𝑖 , 𝑣𝑗) which are 𝑘
steps apart in the matching graph where 

𝑣𝑗 − 𝑣𝑖 ⋅ 𝑢 ≥
𝑘𝜎

𝑑

• Using triangle inequality, 𝑑2 𝑣𝑖 , 𝑣𝑗 ≤ 𝑘Δ

• P 𝑣𝑗 − 𝑣𝑖 ⋅ 𝑢 ≥
𝑘𝜎

𝑑
∼ 𝑒

−
𝑘2𝜎2

𝑑2(𝑣𝑖,𝑣𝑗) ≤ 𝑒−
𝑘𝜎2

Δ

• For Δ = Ω
1

log 𝑛
, if we can apply this with 𝑘 =

Ω log 𝑛 , we again obtain a contradiction. 

Key Idea for Larger Δ Continued



• Lemma: If a graph 𝐺 has average degree 𝑑, we 
can find a non-empty subgraph of 𝐺 which has 

minimal degree 
𝑑

4
.

• Proof: Iteratively delete vertices which have 

degree ≤
𝑑

4
. The total number of edges deleted 

is at most 
𝑛𝑑

4
. However, 2|𝐸 𝐺 | ≥ 𝑛𝑑, so there 

must be ≥
𝑛𝑑

4
edges remaining.

Average Degree to Minimal Degree



• Average probability that a vertex is matched is 
at least 𝑐′𝛿

• Can apply a similar idea and delete any vertex 

which is matched with probability ≤
𝑐′𝛿

4

• By similar logic, at least half the edges are 
preserved.

• This implies that there are at least 𝑐′𝑛 vertices 
remaining (otherwise more than half of every 
matching of ≥ 𝑐′𝑛 edges is deleted)

• Note: Corresponds to Lemma 4 of [ARV09]

Minimal Probability Guarantee



• Corollary: There is a set of vertices 𝑋 of size ≥
𝑐′𝑛 such that 
∀𝑥 ∈ 𝑋, 𝑃 𝑥 is matched with an 𝑥′ ∈ 𝑋 ≥ 𝛿′

where 𝛿′ =
𝑐′𝛿

4

Minimal Probability Guarantee



• How can we find pairs of points whose 
projected distance is larger and larger by taking 
steps in the matching graph?

• Let’s assume we have a very convenient 
inductive setup.

Building Up Projection Distances 



• Have a set of points 𝑋 of size ≥ 𝑐′𝑛

∀𝑥 ∈ 𝑋, 𝑃 𝑥 is matched with an 𝑥′ ∈ 𝑋 ≥ 𝛿′

• Inductive setup: Assume we also have a subset 
𝑍 ⊆ 𝑋 of points of size 𝜏|𝑋| such that

∀𝑧 ∈ 𝑍, 𝑃 ∃𝑧′ ∈ 𝑋: 𝑑𝑀 𝑧, 𝑧′ ≤ 𝑘, 𝑧 − 𝑧′ ⋅ 𝑢 ≥
𝑘𝜎

𝑑
≥ 1 −

𝛿′

4

where 𝑑𝑀(𝑧, 𝑧′) is the number of steps required to 
reach 𝑧′ from 𝑧 in the matching graph

• Note: This corresponds to Definitions 6,8 of 
[ARV]

Setup 



• 𝑋 is a set of points where every 𝑥 ∈ 𝑋 is 
matched to another 𝑥′ ∈ 𝑋 for ≥ 𝛿′ fraction of 
the directions

• Have a subset 𝑍 ⊆ 𝑋 of size ≥ 𝜏|𝑋| where each 

𝑧 ∈ 𝑍 is “covered” in ≥ 1 −
𝛿′

4
fraction of the 

directions by points which are ≤ 𝑘 steps away in 
the matching graph whose projected distance is 

≥
𝑘𝜎

𝑑

Setup Rephrased 



Composition Step

𝑢

𝑧

𝑧′

𝑥′
or

𝑥′

𝑧

𝑧′



• Given a direction 𝑢, for each point 𝑧 ∈ 𝑍:
1. Check if 𝑧 is matched in 𝑀𝑢 = 𝑀−𝑢

2. If so, let 𝑥′ be the point 𝑧 is matched with. 

𝑧 − 𝑥′ ⋅ 𝑢 ≥
2𝜎

𝑑

3. If 𝑧 − 𝑥′ ⋅ 𝑢 > 0, check if 𝑧 is covered in direction 
𝑢. If 𝑧 − 𝑥′ ⋅ 𝑢 < 0 check if 𝑧 is covered in 

direction −𝑢. With probability ≥ 1 −
𝛿′

2
, 𝑧 is 

covered in both directions. Let 𝑧′ = covering point.

4. Observe that 𝑧′ − 𝑥′ ⋅ 𝑢 ≥
𝑘𝜎+2𝜎

𝑑
and 

𝑑𝑀 𝑥′, 𝑧′ ≤ 𝑘 + 1

Composition Step



• Have that the density of the new covering edges 

is at least 
𝜏𝛿′

2
.

• Following the same kind of logic we used to go 
from average to minimal degree, can find a 

subset 𝑍′ ⊆ 𝑋 of size ≥
𝜏𝛿′

8
|𝑋| where every 

vertex 𝑧′ ∈ 𝑍′ is covered in ≥
𝜏𝛿′

8
of the 

directions.

• Note: Corresponds to Lemma 11 of [ARV]

Composition Step



• How can we recover the inductive hypothesis?

• Can boost the covering probability to almost 1 
with a small loss in the projection length!

• Corollary 12 of [ARV] rephrased: If the covering 
vectors have length at most σ

16 log
16

τδ′ +8 log
8

δ′

then 

if z is covered with probability 
𝜏𝛿′

8
with projection 

length 
𝑘𝜎+2𝜎

𝑑
, it is covered with probability 1 −

𝛿′/4 with projection length 
(𝑘+1)𝜎

𝑑

Boosting Lemma



• If we apply this directly:

– 𝜏 ∼ 𝛿′ −𝑘

– Need covering vectors to have length 𝑂
1

𝑙𝑜𝑔𝜏
=

𝑂
1

𝑘

– Guaranteed to have length ≤ 𝑘Δ

– We can take 𝑘 = Ω(Δ−
1

2). We want 
𝑘

Δ
to be a large 

constant times log 𝑛 , which means we can take 
Δ = Ω( 𝑙𝑜𝑔𝑛 −2/3)

Bound on 𝑘 and Δ



• To reach 𝑘 = Ω 𝑙𝑜𝑔𝑛 , a more careful 

argument is needed, see [ARV].

• Note: We should not expect 𝑘 to be any higher 

than O 𝑙𝑜𝑔𝑛 . Recalling that the projection 

length with 𝑘 steps is 
𝑘𝜎

𝑑
, if 𝑑 = Θ(𝑙𝑜𝑔𝑛)

(matching the hypercube example) and 𝑘 is 

𝜔 𝑙𝑜𝑔𝑛 then this is 𝜔(1), which is too 

large!

Reaching 𝑘 = Ω 𝑙𝑜𝑔𝑛



Part V: Reduction to the Well-
Separated Case



• Take the scaling where σ𝑖,𝑗:𝑖<𝑗 𝑑2(𝑖, 𝑗) = 𝑛
2

(i.e. the average squared distance between pairs 
of points is 1)

• One of the following two cases holds:

1. There exists a point 𝑥0 such that 
𝑛

10
other points 

are within squared distance 
1

10
of 𝑥0

2. For all points 𝑥, less than 
𝑛

10
other points are within 

squared distance 
1

10
of 𝑥

Two Cases



• Assume there exists a point 𝑥0 such that 
𝑛

10
other 

points are within squared distance 
1

10
of 𝑥0

• Let 𝑋 = {x: d2 x, x0 ≤
1

10
}

• Key idea: Take the Fréchet embedding with 
respect to 𝑋!

• In particular, take

𝑑𝑋 𝑦, 𝑧 = |𝑑2 𝑦, 𝑋 − 𝑑2 𝑧, 𝑋 |

Case #1



• We will show that

σ𝑖,𝑗:𝑖<𝑗, 𝑖,𝑗 ∈𝐸(𝐺) 𝑑𝑋 𝑖,𝑗

σ𝑖,𝑗:𝑖<𝑗 𝑑𝑋 𝑖,𝑗
is 𝑂

σ𝑖,𝑗:𝑖<𝑗, 𝑖,𝑗 ∈𝐸 𝐺 𝑑2 𝑖,𝑗

σ𝑖,𝑗:𝑖<𝑗 𝑑2 𝑖,𝑗

• 𝑑𝑋 is an 𝐿1 metric, so this gives an 𝑂(1)-
approximation!

• First note that σ𝑖,𝑗:𝑖<𝑗, 𝑖,𝑗 ∈𝐸(𝐺) 𝑑𝑋 𝑖, 𝑗 is less 

than or equal to σ𝑖,𝑗:𝑖<𝑗, 𝑖,𝑗 ∈𝐸(𝐺) 𝑑2 𝑖, 𝑗

• We just need to show that σ𝑖,𝑗:𝑖<𝑗 𝑑𝑋 𝑖, 𝑗 is 
Ω(𝑛2)

Case #1 Continued



• Proposition: The average squared distance of 

points outside of 𝑋 from 𝑋 is at least 
1

5

• Proof: If this were not the case then the average 
squared distance between points would be < 1
as for all 𝑦, z, 

𝑑2 𝑦, 𝑧 ≤ 𝑑2 𝑦, 𝑋 + 𝑑2 𝑧, 𝑋 +
1

5
• Corollary: σ𝑖,𝑗:𝑖<𝑗 𝑑𝑋 (𝑖, 𝑗) is Θ 𝑛2 . To show 

this, it is sufficient to consider the pairs where 
exactly one of 𝑖, 𝑗 are in 𝑋.

Case #1 Continued



• Assume that for all points 𝑥, there are fewer than 
𝑛

10
other points which are within squared 

distance 
1

10
of 𝑥

• Proposition: There is a point 𝑥0 such that at least 
𝑛

2
other points are within distance 2 of 𝑥0

• Proof: If this were not the case then the average 
distance between points would be > 1.

• Let 𝑋 be the set of points within distance 2 of 𝑥0.

Case #2



• Key idea: Subtract 𝑥0 from all vectors!

• After this translation:

– All points in 𝑋 have length ≤ 2

– For all points 𝑥 ∈ 𝑋, there are at least 
n

2
−

n

10
=

2𝑛

5

points in 𝑋 which have squared distance more than 
1

10
from 𝑥. Thus, the average squared distance 

between points in 𝑋 is Ω(1)

• Restricting to 𝑋 and scaling down by a factor of 
2, we are now in the well-spread case

Case #2 Continued



Part VI: Open Problems



• Lower Bounds have been shown for this 
semidefinite program

• Khot and Vishnoi [KV05] proved the first super-
constant lower bound.

• For weighted graphs, Naor and Young [NY17] 

showed an Ω 𝑙𝑜𝑔𝑛 lower bound (which is 

tight up to a 𝑙𝑜𝑔𝑙𝑜𝑔𝑛 factor).

• However, these lower bounds don’t apply even 
to degree 4 SOS!

Lower Bounds



• Is this also true for unweighted graphs?

• Does degree 4 SOS or higher degree SOS give 
further improvements? Can we show a 
superconstant lower bound for a constant 
number of rounds of SOS?

Open Questions
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